The enzyme serine hydroxymethyltransferase (SHMT) plays a key role in folate metabolism and is conserved in all kingdoms of life. SHMT is a pyridoxal 5’-phosphate (PLP) - dependent enzyme that catalyzes the conversion of L-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. Crystal structures of multiple members of the SHMT family have shown that the enzyme has a single conserved cis proline, which is located near the active site. Here, we have characterized a Pro to Ser amino acid variant (P285S) that affects this conserved cis proline in soybean SHMT8. P285S was identified as one of a set of mutations that affect the resistance of soybean to the agricultural pathogen soybean cyst nematode. We find that replacement of Pro285 by serine eliminates PLP-mediated catalytic activity of SHMT8, reduces folate binding, decreases enzyme stability, and affects the dimer-tetramer ratio of the enzyme in solution. Crystal structures at 1.9 – 2.2 Å resolution reveal a local reordering of the polypeptide chain that extends an a-helix and shifts a turn region into the active site. This results in a dramatically perturbed PLP-binding pose, where the ring of the cofactor is flipped by ~180° with concomitant loss of conserved enzyme-PLP interactions. A nearby region of the polypeptide becomes disordered, evidenced by missing electron density for ~10 residues. These structural perturbations are consistent with the loss of enzyme activity and folate binding and underscore the important role of the Pro285 cis-peptide in SHMT structure and function.
more »
« less
Structural and functional analysis of two SHMT8 variants associated with soybean cyst nematode resistance
Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5‐phosphate‐dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10‐methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN‐resistant soybean cultivar (cv.) Forrest, showed profound impairment of folate binding affinity and reduced THF‐dependent enzyme activity, relative to the highly active SHMT8 in cv. Essex, which is susceptible to SCN. Given the importance of SCN‐resistance in soybean agriculture, we report here the biochemical and structural characterization of the P130R and N358Y single variants to elucidate their individual effects on soybean SHMT8. We find that both single variants have reduced THF‐dependent catalytic activity relative to Essex SHMT8 (10‐ to 50‐fold decrease inkcat/Km) but are significantly more active than the P130R/N368Y double variant. The kinetic data also show that the single variants lack THF‐substrate inhibition as found in Essex SHMT8, an observation with implications for regulation of the folate cycle. Five crystal structures of the P130R and N358Y variants in complex with various ligands (resolutions from 1.49 to 2.30 Å) reveal distinct structural impacts of the mutations and provide new insights into allosterism. Our results support the notion that the P130R/N358Y double variant in Forrest SHMT8 produces unique and unexpected effects on the enzyme, which cannot be easily predicted from the behavior of the individual variants.
more »
« less
- Award ID(s):
- 2152548
- PAR ID:
- 10469367
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The FEBS Journal
- Volume:
- 291
- Issue:
- 2
- ISSN:
- 1742-464X
- Format(s):
- Medium: X Size: p. 323-337
- Size(s):
- p. 323-337
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tetrahydrofolate and its derivatives participate in one-carbon transfer reactions in all organisms. The cellular form of tetrahydrofolate (THF) is modified by multiple glutamate residues and polyglutamylation plays a key role in organellar and cellular folate homeostasis. In addition, polyglutamylation of THF is known to increase the binding affinity to enzymes in the folate cycle, many of which can utilize polyglutamylated THF as a substrate. Here, we use X-ray crystallography to provide a high-resolution view of interactions between the enzyme serine hydroxymethyltransferase (SHMT), which provides one carbon precursors for the folate cycle, and a polyglutamylated form of THF. Our 1.7 Å crystal structure of soybean SHMT8 in complex with diglutamylated 5-formyl-THF reveals, for the first time, a structural rearrangement of a loop at the entrance to the folate binding site accompanied by the formation of novel specific interactions between the enzyme and the diglutamyl tail of the ligand. Biochemical assays show that additional glutamate moieties on the folate ligand increase both enzyme stability and binding affinity. Together these studies provide new information on SHMT structure and function and inform the design of anti-folate agents.more » « less
-
Influence of age at seizure onset on the acquisition of neurodevelopmental skills in an SCN8A cohortAbstract ObjectiveTo characterize a cohort of patients withSCN8A‐related epilepsy and to perform analyses to identify correlations involving the acquisition of neurodevelopmental skills. MethodsWe analyzed patient data (n = 91) submitted to an online registry tailored to characteristics of children withSCN8Avariants. Participants provided information on the history of their child's seizures, medications, comorbidities, and developmental skills based on the DenverIIitems. Spearman rank tests were utilized to test for correlations among a variety of aspects of seizures, medications, and neurodevelopmental progression. ResultsThe 91 participants carried 71 missense variants (41 newly reported) and three truncating variants. Ages at seizure onset ranged from birth to >12 months of age (mean ± SD = 5 months 21 days ± 7 months 14 days). Multiple seizure types with multimodal onset times and developmental delay were observed as general features of this cohort. We found a positive correlation between a developmental score based upon percentage of acquired skills and the age at seizure onset, current seizure freedom, and initial febrile seizures. Analyses of cohort subgroups revealed clear distinctions between patients who had a single reported variant inSCN8Aand those with an additional variant reported in a gene other thanSCN8A, as well as between patients with different patterns of regression before and at seizure onset. SignificanceThis is the first study of anSCN8A patient cohort of this size and for which correlations between age at seizure onset and neurodevelopment were investigated. Our correlation studies suggest that variants of uncertain significance should be considered in assessing children withSCN8A‐related disorders. This study substantially improves the characterization of this patient population and our understanding of the neurodevelopmental effects associated with seizures forSCN8A patients, and provides a clinical context at initial presentation that may be prognostic for developmental outcome.more » « less
-
Abstract Cobalamin-dependent methionine synthase (MS) is a key enzyme in methionine and folate one-carbon metabolism. MS is a large multi-domain protein capable of binding and activating three substrates: homocysteine, folate, andS-adenosylmethionine for methylation. Achieving three chemically distinct methylations necessitates significant domain rearrangements to facilitate substrate access to the cobalamin cofactor at the right time. The distinct conformations required for each reaction have eluded structural characterization as its inherently dynamic nature renders structural studies difficult. Here, we use a thermophilic MS homolog (tMS) as a functional MS model. Its exceptional stability enabled characterization of MS in the absence of cobalamin, marking the only studies of a cobalamin-binding protein in its apoenzyme state. More importantly, we report the high-resolution full-length MS structure, ending a multi-decade quest. We also capture cobalamin loadingin crystallo, providing structural insights into holoenzyme formation. Our work paves the way for unraveling how MS orchestrates large-scale domain rearrangements crucial for achieving challenging chemistries.more » « less
-
Abstract The roles of local interactions in the laboratory evolution of a highly active, computationally designed retroaldolase (RA) are examined. Partial Order Optimum Likelihood (POOL) is used to identify catalytically important amino acid interactions in several RA95 enzyme variants. The series RA95.5, RA95.5–5, RA95.5–8, and RA95.5–8F, representing progress along an evolutionary trajectory with increasing activity, is examined. Computed measures of coupling between charged states of residues show that, as evolution proceeds and higher activities are achieved, electrostatic coupling between the biochemically active amino acids and other residues is increased. In silico residue scanning suggests multiple coupling partners for the catalytic lysine K83. The effects of two predicted partners, Y51 and E85, are tested using site‐directed mutagenesis and kinetic analysis of the variants Y51F and E85Q. The Y51F variants show decreases inkcatrelative to wild type, with the greatest losses observed for the more evolved constructs; they also exhibit significant decreases inkcat/KMacross the series. Only modest decreases inkcat/KMare observed for the E85Q variants with little effect onkcat. Computed metrics of the degree of coupling between protonation states rise significantly as evolution proceeds and catalytic turnover rate increases. Specifically, the charge state of the catalytic lysine K83 becomes more strongly coupled to those of other amino acids as the enzyme evolves to a better catalyst.more » « less