skip to main content


Title: Economic simulation of batch and continuous aqueous two‐phase purification for viral products
Abstract

Vaccine manufacturing strategies that lower capital and production costs could improve vaccine access by reducing the cost per dose and encouraging localized manufacturing. Continuous processing is increasingly utilized to drive lower costs in biological manufacturing by requiring fewer capital and operating resources. Aqueous two‐phase systems (ATPS) are a liquid–liquid extraction technique that enables continuous processing for viral vectors. To date, no economic comparison between viral vector purifications using traditional methods and ATPS has been published. In this work, economic simulations of traditional chromatography‐based virus purification were compared to ATPS‐based virus purification for the same product output in both batch and continuous modes. First, the modeling strategy was validated by re‐creating a viral subunit manufacturing economic simulation. Then, ATPS capital and operating costs were compared to that of a traditional chromatography purification at multiple scales. At all scales, ATPS purification required less than 10% of the capital expenditure compared to chromatography‐based purification. At an 11 kg per year production scale, the ATPS production costs were 50% less than purification with chromatography. Other chromatography configurations were explored, and may provide a production cost benefit to ATPS, but the purity and recovery were not experimentally verified. Batch and continuous ATPS were similar in capital and production costs. However, manual price adjustments suggest that continuous ATPS plant‐building costs could be less than half that of batch ATPS at the 11 kg per year production scale. These simulations show the significant reduction in manufacturing costs that ATPS‐based purification could deliver to the vaccine industry.

 
more » « less
PAR ID:
10469403
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology Progress
Volume:
40
Issue:
1
ISSN:
8756-7938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vaccine manufacturing has conventionally been performed by the developed world using traditional unit operations like filtration and chromatography. There is currently a shift in the manufacturing of vaccines to the less developed world, requiring unit operations that reduce costs, increase recovery, and are amenable to continuous manufacturing. This work demonstrates that mannitol can be used as a flocculant for an enveloped and nonenveloped virus and can purify the virus from protein contaminants after microfiltration. The recovery of the virus ranges from 58 to 96% depending on virus, the filter pore size, and the starting concentration of the virus. Protein removal of 80% was achieved for the small nonenveloped virus using a 0.1 µm filter because proteins were not flocculated with the virus and flowed through the filter. It is hypothesized that mannitol dehydrates the viral surface by controlling the water structure surrounding the virus. Without the ability to become compact, as occurs with proteins, the virus aggregates in the presence of osmolytes and proteins do not. Osmolyte flocculation is a scalable process using high flux microfilters. It has been applied to both an enveloped and nonenveloped virus, making this process friendly to a variety of vaccine and gene therapy products. 
    more » « less
  2. The aim of this research was to evaluate the technoeconomic prospect of hydrochar production through co-hydrothermal carbonization of coal waste (CW) and food waste (FW). A process flow diagram was developed that considered seven reactors, six pumps, and other necessary equipment for producing 49,192 kg/h hydrochar. Three different cases were considered for the economic analysis. Case II considered both CW and FW transportation cost while cases I and III considered only FW and only CW transportation, respectively. The economic analysis revealed the break-even costs to be $62.24 per ton for case I, $69.90 per ton for case II, and $60.26 per ton for case III. The fixed capital investment (FCI) was $11.4M for all the cases while total capital investment (TCI), working capital (WC), and manufacturing costs were higher for case II compared to cases I and III. A sensitivity analysis examined the effect of nine different variables on the break-even cost. The raw materials’ cost as well as their transportation costs significantly affected the corresponding break-even cost. Additionally, increasing the hydrochar production capacity has drastically decreased the break-even cost. However, the analysis also revealed that excessive increase of production capacity can have negative impact on the process economics. 
    more » « less
  3. Abstract

    An economic analysis was performed to determine the economic potential and commercialization barriers of producing renewable gasoline and diesel (RGD) fuel blendstocks via formate‐assisted pyrolysis (FAsP) followed by hydrodeoxygenation processes. A process model was simulated using Aspen Plus® to estimate material and energy balances for the conversion of 2000 dry MT per day of pine sawdust. Scenarios were considered for the regeneration of formate salts from either ‐biomass‐derived and natural‐gas‐derived carbon monoxide. The material and energy balances were used to calculate capital and operating costs of RGD fuel production. An economic model was built using capital and operating costs to estimate the minimum selling price (MSP) of RGD fuel. The MSP of RGD fuels were estimated at $4.58 per gallon of gasoline equivalent (GGE) and $4.80 per GGE for natural gas and biomass‐derived CO scenarios, respectively. The total capital investments of these plants were $448 million and $497 million. The feedstock cost was found to be the major cost contributor to the MSP of RGD fuel. Improving FAsP process yields will significantly reduce the production cost of RGD fuel. It has been learned that an increase in deoxygenation of bio‐oil in pyrolysis reactor decreases the capital and operating costs of bio‐oil upgrading to RGD fuel. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd

     
    more » « less
  4. Electrochemical conversion of carbon dioxide (CO2) to valuable products could provide a transformative pathway to produce renewable fuels while adding value to the CO2 captured at point sources. Here, we investigate the thermodynamic feasibility and economic viability of the electrochemical CO2 reduction reaction to various carbon-containing fuels. In particular, we explore various pathways for conversion of CO2 to dimethyl ether (DME), liquid propane gas, and renewable natural gas. We compare and contrast the use of two different proton sources, including hydrogen gas and water vapor at the anode, on the capital and operating costs (OPEX) of electrochemical systems to produce DME. The results indicate that the electrical costs are the most significant portion of OPEX, demonstrating costs of 0.2–0.6 $/kWh per metric ton of DME. DME production using carbon monoxide and formic acid as intermediates proved to be the most cost-effective, demonstrating levelized costs of energy of 0.28 $/kWh with over 0.15 $/kWh of cost recovery possible through renewable hydrogen tax credits and oxygen and hydrogen gas recovery. 
    more » « less
  5. null (Ed.)
    Widespread vaccine coverage for viral diseases could save the lives of millions of people each year. For viral vaccines to be effective, they must be transported and stored in a narrow temperature range of 2–8 °C. If temperatures are not maintained, the vaccine may lose its potency and would no longer be effective in fighting disease; this is called the cold storage problem. Finding a way to thermally stabilize a virus and end the need to transport and store vaccines at refrigeration temperatures will increase access to life-saving vaccines. We explore the use of polymer-rich complex coacervates to stabilize viruses. We have developed a method of encapsulating virus particles in liquid complex coacervates that relies on the electrostatic interaction of viruses with polypeptides. In particular, we tested the incorporation of two model viruses; a non-enveloped porcine parvovirus (PPV) and an enveloped bovine viral diarrhea virus (BVDV) into coacervates formed from poly(lysine) and poly(glutamate). We identified optimal conditions ( i.e. , the relative amount of the two polypeptides) for virus encapsulation, and trends in this composition matched differences in the isoelectric point of the two viruses. Furthermore, we were able to achieve a ∼10 3 –10 4 -fold concentration of virus into the coacervate phase, such that the level of virus remaining in the bulk solution approached our limit of detection. Lastly, we demonstrated a significant enhancement of the stability of non-enveloped PPV during an accelerated aging study at 60 °C over the course of a week. Our results suggest the potential for using coacervation to aid in the purification and formulation of both enveloped and non-enveloped viruses, and that coacervate-based formulations could help limit the need for cold storage throughout the transportation and storage of vaccines based on non-enveloped viruses. 
    more » « less