skip to main content


This content will become publicly available on October 16, 2024

Title: Characterizing urban lifestyle signatures using motif properties in network of places

The lifestyles of urban dwellers could reveal important insights regarding the dynamics and complexity of cities. The availability of human movement data captured from cell phones enables characterization of distinct and recurrent human daily visitation patterns. Despite growing research on analysis of lifestyle patterns in cities, little is known about the characteristics of people’s lifestyle patterns at urban scale. This limitation is primarily due to challenges in restriction of human movement data to protect the privacy of users. To address this gap, this study constructed networks of places to model cities based on location-based human visitation data. We examined the motifs in the networks of places to map and characterize lifestyle patterns at urban scale. The results show that (1) people’s lifestyles in cities can be well depicted and quantified based on distribution and attributes of motifs in networks of places; (2) motifs show stability in quantity and distance as well as periodicity on weekends and weekdays indicating the stability of lifestyle patterns in cities; (3) networks of places and lifestyle patterns show similarities across different metropolitan areas implying the universality of lifestyle signatures across cities; (4) lifestyles represented by attributed motifs are spatially heterogeneous suggesting variations of lifestyle patterns within different population groups based on where they live in a city. The findings provide deeper insights into urban lifestyle signatures and significant implications for data-informed urban planning and management.

 
more » « less
NSF-PAR ID:
10469414
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Environment and Planning B: Urban Analytics and City Science
Volume:
51
Issue:
4
ISSN:
2399-8083
Format(s):
Medium: X Size: p. 889-903
Size(s):
["p. 889-903"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urbanization and its problems require an in-depth and comprehensive understanding of urban dynamics, especially the complex and diversified lifestyles in modern cities. Digitally acquired data can accurately capture complex human activity, but it lacks the interpretability of demographic data. In this paper, we study a privacy-enhanced dataset of the mobility visitation patterns of 1.2 million people to 1.1 million places in 11 metro areas in the U.S. to detect the latent mobility behaviors and lifestyles in the largest American cities. Despite the considerable complexity of mobility visitations, we found that lifestyles can be automatically decomposed into only 12 latent interpretable activity behaviors on how people combine shopping, eating, working, or using their free time. Rather than describing individuals with a single lifestyle, we find that city dwellers’ behavior is a mixture of those behaviors. Those detected latent activity behaviors are equally present across cities and cannot be fully explained by main demographic features. Finally, we find those latent behaviors are associated with dynamics like experienced income segregation, transportation, or healthy behaviors in cities, even after controlling for demographic features. Our results signal the importance of complementing traditional census data with activity behaviors to understand urban dynamics.

     
    more » « less
  2. Abstract

    Lifestyle recovery captures the collective effects of population activities as well as the restoration of infrastructure and business services. This study uses a novel approach to leverage privacy-enhanced location intelligence data, which is anonymized and aggregated, to characterize distinctive lifestyle patterns and to unveil recovery trajectories after 2017 Hurricane Harvey in Harris County, Texas (USA). The analysis integrates multiple data sources to record the number of visits from home census block groups (CBGs) to different points of interest (POIs) in the county during the baseline and disaster periods. For the methodology, the research utilizes unsupervised machine learning and ANOVA statistical testing to characterize the recovery of lifestyles using privacy-enhanced location intelligence data. First, primary clustering using k-means characterized four distinct essential and non-essential lifestyle patterns. For each primary lifestyle cluster, the secondary clustering characterized the impact of the hurricane into four possible recovery trajectories based on the severity of maximum disruption and duration of recovery. The findings further reveal multiple recovery trajectories and durations within each lifestyle cluster, which imply differential recovery rates among similar lifestyles and different demographic groups. The impact of flooding on lifestyle recovery extends beyond the flooded regions, as 59% of CBGs with extreme recovery durations did not have at least 1% of direct flooding impacts. The findings offer a twofold theoretical significance: (1) lifestyle recovery is a critical milestone that needs to be examined, quantified, and monitored in the aftermath of disasters; (2) spatial structures of cities formed by human mobility and distribution of facilities extend the spatial reach of flood impacts on population lifestyles. These provide novel data-driven insights for public officials and emergency managers to examine, measure, and monitor a critical milestone in community recovery trajectory based on the return of lifestyles to normalcy.

     
    more » « less
  3. Abstract

    Seeking spatiotemporal patterns about how citizens interact with the urban space is critical for understanding how cities function. Such interactions were studied in various forms focusing on patterns of people’s presence, action, and transition in the urban environment, which are defined as human-urban interactions in this paper. Using human activity datasets that utilize mobile positioning technology for tracking the locations and movements of individuals, researchers developed stochastic models to uncover preferential return behaviors and recurrent transitional activity structures in human-urban interactions. Ad-hoc heuristics and spatial clustering methods were applied to derive meaningful activity places in those studies. However, the lack of semantic meaning in the recorded locations makes it difficult to examine the details about how people interact with different activity places. In this study, we utilized geographic context-aware Twitter data to investigate the spatiotemporal patterns of people’s interactions with their activity places in different urban settings. To test consistency of our findings, we used geo-located tweets to derive the activity places in Twitter users’ location histories over three major U.S. metropolitan areas: Greater Boston Area, Chicago, and San Diego, where the geographic context of each location was inferred from its closest land use parcel. The results showed striking spatial and temporal similarities in Twitter users’ interactions with their activity places among the three cities. By using entropy-based predictability measures, this study not only confirmed the preferential return behaviors as people tend to revisit a few highly frequented places but also revealed detailed characteristics of those activity places.

     
    more » « less
  4. Abstract

    Understanding the relationship between spatial structures of cities and environmental hazard exposures is essential for urban health and sustainability planning. However, a critical knowledge gap exists in terms of the extent to which socio-spatial networks shaped by human mobility exacerbate or alleviate urban heat exposures of populations in cities. In this study, we utilize location-based data to construct human mobility networks in twenty metropolitan areas in the U.S. The human mobility networks are analyzed in conjunction with the urban heat characteristics of spatial areas. We identify areas with high and low urban heat exposure and evaluate visitation patterns of populations residing in high and low urban heat areas to other spatial areas with similar and dissimilar urban heat exposure. The results reveal the presence of urban heat traps in the majority of the studied metropolitan areas, wherein populations residing in high-heat exposure areas primarily visited other high-heat exposure zones. Specifically, cities such as Los Angeles, Boston, and Chicago were particularly pronounced as urban heat traps. The results also show a small percentage of human mobility to produce urban heat escalation and heat escapes. The findings from this study provide a better understanding of urban heat exposure in cities based on patterns of human mobility. These findings contribute to a broader understanding of the intersection of human network dynamics and environmental hazard exposures in cities to inform more integrated urban design and planning to promote health and sustainability.

     
    more » « less
  5. null (Ed.)
    The “mismatch” between evolved human physiology and Western lifestyles is thought to explain the current epidemic of cardiovascular disease (CVD) in industrialized societies. However, this hypothesis has been difficult to test because few populations concurrently span ancestral and modern lifestyles. To address this gap, we collected interview and biomarker data from individuals of Turkana ancestry who practice subsistence-level, nomadic pastoralism (the ancestral way of life for this group), as well as individuals who no longer practice pastoralism and live in urban areas. We found that Turkana who move to cities exhibit poor cardiometabolic health, partially because of a shift toward “Western diets” high in refined carbohydrates. We also show that being born in an urban area independently predicts adult health, such that life-long city dwellers will experience the greatest CVD risk. By focusing on a substantial lifestyle gradient, our work thus informs the timing, magnitude, and evolutionary causes of CVD. 
    more » « less