skip to main content


Title: Cooperative Rheological State‐Switching of Enzymatically‐Driven Composites of Circular DNA And Dextran
Abstract

Polymer topology, which plays a principal role in the rheology of polymeric fluids, and non‐equilibrium materials, which exhibit time‐varying rheological properties, are topics of intense investigation. Here, composites of circular DNA and dextran are pushed out‐of‐equilibrium via enzymatic digestion of DNA rings to linear fragments. These time‐resolved rheology measurements reveal discrete state‐switching, with composites undergoing abrupt transitions between dissipative and elastic‐like states. The gating time and lifetime of the elastic‐like states, and the magnitude and sharpness of the transitions, are surprisingly decorrelated from digestion rates and non‐monotonically depend on the DNA fraction. These results are modeled using sigmoidal two‐state functions to show that bulk state‐switching can arise from continuous molecular‐level activity due to the necessity for cooperative percolation of entanglements to support macroscopic stresses. This platform, coupling the tunability of topological composites with the power of enzymatic reactions, may be leveraged for diverse material applications from wound‐healing to self‐repairing infrastructure.

 
more » « less
Award ID(s):
1919429 2050846
NSF-PAR ID:
10469427
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The thermodynamics of the shear-induced phase transition of soft particle glasses is presented. Jammed suspensions of soft particles transform into a layered phase in a strong shear flow from a stable glassy phase at lower shear rates. The thermodynamics of the two phases can be computed based on the elastic energy and excess entropy of the system. At a critical shear rate, the elastic energy, the excess entropy, the free energy, the temperature, and the shear stress undergo discontinuous jumps at the phase transitions from the glassy to the layered phase. An effective temperature is defined from the derivative of the elastic energy and the excess entropy. The Helmholtz free energy is constructed using the elastic energy, excess entropy, and derived temperature. At a fixed shear rate, there is no equilibrium between the states. However, at a fixed temperature, the glassy and layered states may coexist, as indicated by the equality of their Helmholtz free energies. While this first-order phase transition is possible, it cannot be observed in simple shear because the stress is the same in both phases at the same temperature. Thus, shear banding cannot be observed in this system. Finally, an equation of state, which relates the shear stress to the excess entropy, is presented. This equation of state shows that all dynamical properties (e.g., shear-induced diffusivity and first and second normal stresses) of these jammed non-Brownian suspensions can be determined solely by measuring the shear stress.

     
    more » « less
  2. null (Ed.)
    Colloidal gels represent an important class of soft matter, in which networks formed due to strong, short-range interactions display solid-like mechanical properties, such as a finite low-frequency elastic modulus. Here we examine the effect of embedded active colloids on the linear viscoelastic moduli of fractal cluster colloidal gels. We find that the autonomous, out-of-equilibrium dynamics of active colloids incorporated into the colloidal network decreases gel elasticity, in contrast to observed stiffening effects of myosin motors in actin networks. Fractal cluster gels are formed by the well-known mechanism of aggregating polystyrene colloids through addition of divalent electrolyte. Active Janus particles with a platinum hemisphere are created from the same polystyrene colloids and homogeneously embedded in the gels at dilute concentration at the time of aggregation. Upon addition of hydrogen peroxide – a fuel that drives the diffusiophoretic motion of the embedded Janus particles – the microdynamics and mechanical rheology change in proportion to the concentration of hydrogen peroxide and the number of active colloids. We propose a theoretical explanation of this effect in which the decrease in modulus is mediated by active motion-induced softening of the inter-particle attraction. Furthermore, we characterize the failure of the fluctuation–dissipation theorem in the active gels by identifying a discrepancy between the frequency-dependent macroscopic viscoelastic moduli and the values predicted by microrheology from measurement of the gel microdynamics. These findings support efforts to engineer gels for autonomous function by tuning the microscopic dynamics of embedded active particles. Such reconfigurable gels, with multi-state mechanical properties, could find application in materials such as paints and coatings, pharmaceuticals, self-healing materials, and soft robotics. 
    more » « less
  3. Abstract

    Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information.

     
    more » « less
  4. Abstract

    The hypothesis that ice-sheet evolution is only controlled by the long-term non-Newtonian viscous behavior of ice has been challenged by observations indicating that effects like brittle failure, stick-slip sliding, tides and wave action may affect ice-sheet evolution on sub-daily timescales. Over these timescales, the quasi-static-creep approximation is no longer appropriate and elastic effects become important. Simulating elastic effects in ice-sheet models over relevant timescales, however, remains challenging. Here, we show that by including a visco-elastic rheology and reintroducing the oft neglected acceleration term back into the ice-sheet stress balance, we can create a visco-elastic system where the velocity is locally determined and information propagates at the elastic wave speed. Crucially, the elastic wave speed can be treated like an adjustable parameter and set to any value to reproduce a range of phenomena, provided the wave speed is large compared to the viscous velocity. We illustrate the system using three examples. The first two examples demonstrate that the system converges to the steady-state viscous and elastic limits. The third example examines ice-shelf rifting and iceberg calving. This final example hints at the utility of the visco-elastic formulation in treating both long-term evolution and short-term environmental effects.

     
    more » « less
  5. Abstract

    Subduction zone accretionary prisms are commonly modeled as elastic structures where permanent deformation is accommodated by faulting and folding of otherwise elastic materials, yet accretionary prisms may exhibit other deformation styles over relatively short time scales. In this study, we use 6.5‐year (2014–2021) Sentinel‐1 interferometric synthetic aperture radar (InSAR) time‐series of post‐seismic deformation in the Makran accretionary prism of southeast Pakistan to characterize non‐linear viscoelastic deformation within an active accretionary prism on short timescales (months to years). We constructed a series of 3‐D finite‐element models of the Makran subduction zone, including an accretionary prism, and constrained the elastic thickness of the upper wedge and the flow‐law parameters (power‐law exponent, activation enthalpy, and pre‐exponential constant) of the lower wedge through forward model fits to the InSAR time‐series. Our results show that the prism is elastically thin (8–12 km) and the non‐linear viscoelastic relaxation of the deep portions of the prism alone can sufficiently explain the post‐seismic surface deformation. Our best fitting flow‐law parameters (n = 3.76 ± 0.39,Q = 82.2 ± 37.73 kJ mol−1, andA = 10−3.36±4.69) are consistent with triggering of low temperature dislocation creep within fluid‐saturated siliciclastic rocks. We believe that the fluids necessary for this weakening originate from sedimentary underplating and/or the presence the hydrocarbons. The presence of power‐law rheology within the lower wedge impacts the estimated plate coupling and the stress state in the subduction system, with respect to the conventional elastic wedge model, and hence should to be considered in future earthquake cycle models.

     
    more » « less