null
(Ed.)
The focus of this paper is application of a Graphical Processing Unit (GPU) based solver to linearly elastic finite element analysis (FEA) of composites with threedimensional (3D) woven reinforcements. Aspects specific to this material system including local material orientations, high contrast between elastic properties of constituents, large number of degrees of freedom, and simulation runtimes are discussed. Speedups offered by parallelization via GPUs and regularity of structured grids enable matrix-free implementation of FEA, which requires reassembly of the global stiffness at every iteration of solution of the system of linear equations, but in turn significantly reduces memory requirements. This makes linear analysis of composite structures with explicit reinforcement representation (tens of millions of degrees of freedom) possible on personal computers. Potential applications of this procedure include fast calculation of effective properties for design of novel 3D woven architectures and efficient solution of problems with high degrees of material nonlinearity requiring frequent stiffness matrix updates.
more »
« less