skip to main content


Title: Genome‐wide association and genomic prediction for yield and component traits of Miscanthus sacchariflorus
Abstract

Accelerating biomass improvement is a major goal ofMiscanthusbreeding. The development and implementation of genomic‐enabled breeding tools, like marker‐assisted selection (MAS) and genomic selection, has the potential to improve the efficiency ofMiscanthusbreeding. The present study conducted genome‐wide association (GWA) and genomic prediction of biomass yield and 14 yield‐components traits inMiscanthus sacchariflorus. We evaluated a diversity panel with 590 accessions ofM. sacchariflorusgrown across 4 years in one subtropical and three temperate locations and genotyped with 268,109 single‐nucleotide polymorphisms (SNPs). The GWA study identified a total of 835 significant SNPs and 674 candidate genes across all traits and locations. Of the significant SNPs identified, 280 were localized in mapped quantitative trait loci intervals and proximal to SNPs identified for similar traits in previously reportedMiscanthusstudies, providing additional support for the importance of these genomic regions for biomass yield. Our study gave insights into the genetic basis for yield‐component traits inM. sacchariflorusthat may facilitate marker‐assisted breeding for biomass yield. Genomic prediction accuracy for the yield‐related traits ranged from 0.15 to 0.52 across all locations and genetic groups. Prediction accuracies within the six genetic groupings ofM. saccharifloruswere limited due to low sample sizes. Nevertheless, the Korea/NE China/Russia (N = 237) genetic group had the highest prediction accuracy of all genetic groups (ranging 0.26–0.71), suggesting that with adequate sample sizes, there is strong potential for genomic selection within the genetic groupings ofM. sacchariflorus. This study indicated that MAS and genomic prediction will likely be beneficial for conducting population‐improvement ofM. sacchariflorus.

 
more » « less
NSF-PAR ID:
10469562
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;   « less
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
GCB Bioenergy
Volume:
15
Issue:
11
ISSN:
1757-1693
Format(s):
Medium: X Size: p. 1355-1372
Size(s):
["p. 1355-1372"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Miscanthusis a high‐yielding bioenergy crop that is broadly adapted to temperate and tropical environments. Commercial cultivation ofMiscanthusis predominantly limited to a single sterile triploid clone ofMiscanthus × giganteus, a hybrid betweenMiscanthus sacchariflorusandM. sinensis.To expand the genetic base ofM. × giganteus, the substantial diversity within its progenitor species should be used for cultivar improvement and diversification. Here, we phenotyped a diversity panel of 605 M. sacchariflorusfrom six previously described genetic groups and 27M. × giganteusgenotypes for dry biomass yield and 16 yield‐component traits, in field trials grown over 3 years at one subtropical location (Zhuji, China) and four temperate locations (Foulum, Denmark; Sapporo, Japan; Urbana, Illinois; and Chuncheon, South Korea). There was considerable diversity in yield and yield‐component traits among and within genetic groups ofM. sacchariflorus, and across the five locations. Biomass yield ofM. sacchariflorusranged from 0.003 to 34.0 Mg ha−1in year 3. Variation among the genetic groups was typically greater than within, so selection of genetic group should be an important first step for breeding withM. sacchariflorus. The Yangtze 2x genetic group (=ssp.lutarioriparius) ofM. sacchariflorushad the tallest and thickest culms at all locations tested. Notably, the Yangtze 2x genetic group's exceptional culm length and yield potential were driven primarily by a large number of nodes (>29 nodes culm−1average over all locations), which was consistent with the especially late flowering of this group. The S Japan 4x, the N China/Korea/Russia 4x, and the N China 2x genetic groups were also promising genetic resources for biomass yield, culm length, and culm thickness, especially for temperate environments. Culm length was the best indicator of yield potential inM. sacchariflorus. These results will inform breeders' selection ofM. sacchariflorusgenotypes for population improvement and adaptation to target production environments.

     
    more » « less
  2. Abstract Background

    Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus,indica,temperate japonica, andtropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets.

    Results

    We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variation in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice andArabidopsis.

    Conclusions

    Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.

     
    more » « less
  3. Abstract Missing heritability in genome-wide association studies defines a major problem in genetic analyses of complex biological traits 1,2 . The solution to this problem is to identify all causal genetic variants and to measure their individual contributions 3,4 . Here we report a graph pangenome of tomato constructed by precisely cataloguing more than 19 million variants from 838 genomes, including 32 new reference-level genome assemblies. This graph pangenome was used for genome-wide association study analyses and heritability estimation of 20,323 gene-expression and metabolite traits. The average estimated trait heritability is 0.41 compared with 0.33 when using the single linear reference genome. This 24% increase in estimated heritability is largely due to resolving incomplete linkage disequilibrium through the inclusion of additional causal structural variants identified using the graph pangenome. Moreover, by resolving allelic and locus heterogeneity, structural variants improve the power to identify genetic factors underlying agronomically important traits leading to, for example, the identification of two new genes potentially contributing to soluble solid content. The newly identified structural variants will facilitate genetic improvement of tomato through both marker-assisted selection and genomic selection. Our study advances the understanding of the heritability of complex traits and demonstrates the power of the graph pangenome in crop breeding. 
    more » « less
  4. Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, laborious, and expensive. However, with the plummeting costs of next-generation sequencing and the addition of genomic selection to the plant breeder’s toolbox, we now can more efficiently tap the genetic diversity within large germplasm collections. In this study, we applied and evaluated genomic prediction’s potential to a set of 482 pea ( Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related components—for enhancing selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models and several factors affecting predictive ability were evaluated in a series of cross-validation schemes across complex traits. Different genomic prediction models gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all traits. Increasing the training population size improved the predictive ability of most traits, including seed yield. Predictive abilities increased and reached a plateau with increasing number of markers presumably due to extensive linkage disequilibrium in the pea genome. Accounting for population structure effects did not significantly boost predictive ability, but we observed a slight improvement in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that none of the nonphenotyped accessions were expected to perform outside the range of the phenotyped accessions. Desirable breeding values with higher reliability can be used to identify and screen favorable germplasm accessions. Expanding the training set and incorporating additional orthogonal information (e.g., transcriptomics, metabolomics, physiological traits, etc.) into the genomic prediction framework can enhance prediction accuracy. 
    more » « less
  5. Abstract

    Application of crop growth models (CGMs) in plant breeding is limited by the large number of candidate cultivars that breeders work with and the large number of CGM parameters that affect cultivar performance. The objectives of this study were to (1) calibrate 15 publicly available maize hybrids in Agricultural Production Systems sIMulator and quantify prediction accuracy in modeling physiological trait differences (yield, biomass, phenology, etc.) among genotypes; (2) better understand minimum phenotypic data requirements for CGM cultivar calibration to inform breeding efforts; and (3) quantify simulated genotype by environment interactions (G × E) across years for five traits. We calibrated hybrids with two years of multi‐trait, temporal field measurements. TheR2of simulated versus observed phenotypes was 0.89 for grain yield and over 0.80 for half of all other simulated traits. Phenology parameters accounted for nearly half of the variability in grain yield. Average (across traits) normalized root mean square error was reduced from 35% to 30% with calibration based on phenological measurements and was reduced to 20% with inclusion of physiological and nitrogen‐related measurements such as radiation use efficiency and grain nitrogen. Long‐term simulations demonstrated distinct G × E among the hybrids which accounted for 2%–29% of the total genetic variation across traits. Parameter values derived in this work will provide insight regarding important physiological traits for further phenotyping, selection, and understanding of G × E. These calibrations are for publicly available hybrids, which are currently lacking.

     
    more » « less