skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechano‐Activated Shape Morphing of Aluminum–Plastic Laminate Composites
Many “metallized plastic” packaging films bend if stretched and released. Such behavior can be reproduced in laminate composites prepared by bonding aluminum foil to an adhesive polymer sheet. It is shown that such bending occurs because stretching deforms the aluminum layer permanently (i.e., plastically), whereas the polymer layer deforms elastically. Upon releasing, the aluminum–polymer composite then resolves the strain mismatch by bending, with the aluminum on the convex side of the bend. The curvature is found to increase linearly with the applied strain and to reduce as the aluminum thickness increases. The theory of fully elastic bilayers with strain mismatch is in qualitative agreement with the results, but underpredicts the curvatures. It is shown how such bilayers can be patterned with defects such as holes or slits to realize more complex shape morphing, and also how one may achieve bidirectional bending. Such aluminum–polymer‐layered composites provide an inexpensive platform suitable for rapid prototyping of self‐folding origami structures using robust materials.  more » « less
Award ID(s):
2036164
PAR ID:
10469564
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
25
Issue:
22
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, an open-cell metallic foam was filled in by a tough shape memory polymer (SMP), to form a hybrid metal/polymer composite with multifunctionalities and enhanced mechanical properties. This work aims to study the positive composite actions between the metallic skeleton and the SMP filler. Mechanical, thermal, and conductive properties of the resulting hybrid composite were evaluated and compared to the individual components. Uniaxial compression tests and shape memory effect tests were conducted. Results demonstrated an improvement in the compressive strength and toughness. The hybrid composite also exhibited excellent shape recovery and high recovery stress of 1.76 MPa. Infrared thermography has been used to verify the free shape recovery by Joule heating. Sandwich structures with the hybrid composite as the core were studied through low velocity impact test and three-point bending test. The sandwich structures with the composite foam core showed significant performance improvement in both tests. Electrical resistivity study during the three-point bending test validates the possible application of this multifunctional polymer-aluminum open cell foam composite as strain sensor. This type of hybrid composites can be beneficial in many industrial sectors that search for an ideal combination of high strength, high toughness, low weight, damage sensing, and excellent energy absorption capabilities. 
    more » « less
  2. Abstract Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion to space exploration to seismology. However, investigating material properties at extreme strain rates remains challenging due to temporal and spatial resolution limitations. Combining high-strain-rate testing with mechanochemistry encodes the molecular-level deformation within the material itself, thus enabling the direct quantification of the material response. Here, we demonstrate a mechanophore-functionalized block copolymer that self-reports energy dissipation mechanisms, such as bond rupture and acoustic wave dissipation, in response to high-strain-rate impacts. A microprojectile accelerated towards the polymer permanently deforms the material at a shallow depth. At intersonic velocities, the polymer reports significant subsurface energy absorption due to shockwave attenuation, a mechanism traditionally considered negligible compared to plasticity and not well explored in polymers. The acoustic wave velocity of the material is directly recovered from the mechanochemically-activated subsurface volume recorded in the material, which is validated by simulations, theory, and acoustic measurements. This integration of mechanochemistry with microballistic testing enables characterization of high-strain-rate mechanical properties and elucidates important insights applicable to nanomaterials, particle-reinforced composites, and biocompatible polymers. 
    more » « less
  3. Carbon nanotubes (CNTs), as they possess outstanding mechanical properties and low density, are considered as one of the most promising reinforcements in composite structures. Due to their capability of transferring loads, CNTs in long continuous forms such as yarns and tapes can withstand 20 times as much load as steel can do at the same weight. In this research, carbon nanotube yarns were wound onto an aluminum plate using a custom-built fixture to fabricate a unidirectional strip. Then, by brushing epoxy resin on the strip and laminating four layers, the unidirectional CNT reinforced epoxy resin composite beam specimens were produced. The mechanical properties of the unidirectional CNT-reinforced composite (CNTRC) were determined using standard tensile tests. This study presents a method for manufacturing CNTRC out of CNT yarns, determining the CNTRC’s Young’s modulus as well as the tensile strength, and obtaining its strain field via digital image correlation (DIC) method. It is observed that the pressure due to sandwiching of the aluminum plates during the manufacturing process leads to nonuniformity of the specimen in the width along midspan of the longitudinal direction which results in the specimen’s not being perfectly unidirectional. This phenomenon can cause the matrix cracking in tensile test and reduce the ultimate tensile strength up to 78% in comparison with perfectly unidirectional specimens. However, the Young’s modulus of such composites is comparable with those obtained from previously existing research. Also, Results from DIC showed the possible failure prone areas in the specimens, as it presents a up to 64% difference between the highest and lowest strain in the tensile loading direction through the specimens. This study will serve as a foundation for future research involving CNT composites, particularly the use of their high anisotropy to produce auxetic composites with large negative Poisson’s ratios. 
    more » « less
  4. Dmitry Eskin (Ed.)
    Automotive stampings undergo complex strain paths during drawing, stretching, and bending operations which develop large plastic strain gradients within the material. Aluminum sheet alloys are increasingly used for vehicle structure lightweighting, but limited formability and high levels of springback present challenges to the manufacturing and assembly processes. The current work explores the springback levels in AA6016-T4 sheet after pure bending operations. Finite element modeling is performed using both isotropic and elasto-plastic self-consistent (EPSC) crystal plasticity approaches. The EPSC model incorporates backstresses informed by GND content, as measured via high-resolution EBSD. Its predictions are shown to be more accurate than those of the isotropic model. The benefits and limitations of the current EPSC model are discussed. 
    more » « less
  5. The magnetoelectric effect (ME) is an important strain mediated-phenomenon in a ferromagnetic-piezoelectric composite for a variety of sensors and signal processing devices. A bias magnetic field, in general, is essential to realize a strong ME coupling in most composites. Magnetic phases with (i) high magnetostriction for strong piezomagnetic coupling and (ii) large anisotropy field that acts as a built-in bias field are preferred so that miniature, ME composite-based devices can operate without the need for an external magnetic field. We are able to realize such a magnetic phase with a composite of (i) barium hexaferrite (BaM) with high magnetocrystalline anisotropy field and (ii) nickel ferrite (NFO) with high magnetostriction. The BNx composites, with (100 − x) wt.% of BaM and x wt.% NFO, for x = 0–100, were prepared. X-ray diffraction analysis shows that the composites did not contain any impurity phases. Scanning electron microscopy images revealed that, with an increase in NFO content, hexagonal BaM grains become prominent, leading to a large anisotropy field. The room temperature saturation magnetization showed a general increase with increasing BaM content in the composites. NFO rich composites with x ≥ 60 were found to have a large magnetostriction value of around −23 ppm, comparable to pure NFO. The anisotropy field HA of the composites, determined from magnetization and ferromagnetic resonance (FMR) measurements, increased with increasing NFO content and reached a maximum of 7.77 kOe for x = 75. The BNx composite was cut into rectangular platelets and bonded with PZT to form the bilayers. ME voltage coefficient (MEVC) measurements at low frequencies and at mechanical resonance showed strong coupling at zero bias for samples with x ≥ 33. This large in-plane HA acted as a built-in field for strong ME effects under zero external bias in the bilayers. The highest zero-bias MEVC of ~22 mV/cm Oe was obtained for BN75-PZT bilayers wherein BN75 also has the highest HA. The Bilayer of BN95-PZT showed a maximum MEVC ~992 mV/cm Oe at electromechanical resonance at 59 kHz. The use of hexaferrite–spinel ferrite composite to achieve strong zero-bias ME coupling in bilayers with PZT is significant for applications related to energy harvesting, sensors, and high frequency devices. 
    more » « less