skip to main content


Title: Hybrid dielectric slot-plasmonic ring resonator for Purcell enhancement
Abstract

We present a computational study of Purcell factor enhancement for a novel hybrid-plasmonic ring resonator using a novel implementation of the body-of-revolution (BOR) finite-difference time-domain (FDTD) method. In this hybrid structure, a dielectric slot ring is surrounded by a metallic ring such that a hybrid plasmonic mode is generated within two thin low-index gaps. The surrounding metallic ring decreases the binding loss for small ring radii, leading to high-quality factors and mode-field confinement. The hybrid resonator shows high quality-factor values above 103and small mode volumes down to103λn3simultaneously, thus providing large Purcell factors (Fp> 104). The distributed strong confinement within two gaps renders the proposed resonator useful for multi-emitter applications.

 
more » « less
NSF-PAR ID:
10469584
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Physica Scripta
Volume:
98
Issue:
11
ISSN:
0031-8949
Format(s):
Medium: X Size: Article No. 115030
Size(s):
["Article No. 115030"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The merger of two galaxies, each hosting a supermassive black hole (SMBH) of mass 106Mor more, could yield a bound SMBH binary. For the early-type galaxy NGC 4472, we study how astrometry with a next-generation Very Large Array could be used to monitor the reflex motion of the primary SMBH of massMpri, as it is tugged on by the secondary SMBH of massMsec. Casting the orbit of the putative SMBH binary in terms of its periodP, semimajor axisabin, and mass ratioq=Msec/Mpri1, we find the following: (1) Orbits with fiducial periods ofP= 4 yr and 40 yr could be spatially resolved and monitored. (2) For a 95% accuracy of 2μas per monitoring epoch, subparsec values ofabincould be accessed over a range of mass ratios notionally encompassing majorq>14and minorq<14galaxy mergers. (3) If no reflex motion is detected forMpriafter 1 (10) yr of monitoring, an SMBH binary with periodP= 4 (40) yr and mass ratioq> 0.01 (0.003) could be excluded. This would suggest no present-day evidence for a past major merger like that recently simulated, where scouring by aq∼ 1 SMBH binary formed a stellar core with kinematic traits like those of NGC 4472. (4) Astrometric monitoring could independently check the upper limits onqfrom searches for continuous gravitational waves from NGC 4472.

     
    more » « less
  2. Abstract

    Supermassive black hole binary systems (SMBHBs) should be the most powerful sources of gravitational waves (GWs) in the universe. Once pulsar timing arrays (PTAs) detect the stochastic GW background from their cosmic merger history, searching for individually resolvable binaries will take on new importance. Since these individual SMBHBs are expected to be rare, here we explore how strong gravitational lensing can act as a tool for increasing their detection prospects by magnifying fainter sources and bringing them into view. Unlike for electromagnetic waves, when the geometric optics limit is nearly always valid, for GWs the wave-diffraction-interference effects can become important when the wavelength of the GWs is larger than the Schwarzchild radius of the lens, i.e.,Mlens108fmHz1M. For the GW frequency range explored in this work, the geometric optics limit holds. We investigate GW signals from SMBHBs that might be detectable with current and future PTAs under the assumption that quasars serve as bright beacons that signal a recent merger. Using the black hole mass function derived from quasars and a physically motivated magnification distribution, we expect to detect a few strongly lensed binary systems out toz≈ 2. Additionally, for a range of fixed magnifications 2 ≤μ≤ 100, strong lensing adds up to ∼30 more detectable binaries for PTAs. Finally, we investigate the possibility of observing both time-delayed electromagnetic signals and GW signals from these strongly lensed binary systems—that will provide us with unprecedented multi-messenger insights into their orbital evolution.

     
    more » « less
  3. Abstract

    The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the followinga prioriunstable Hamiltonian system with a time-periodic perturbationHε(p,q,I,φ,t)=h(I)+i=1n±12pi2+Vi(qi)+εH1(p,q,I,φ,t),where(p,q)Rn×Tn,(I,φ)Rd×Tdwithn,d⩾ 1,Viare Morse potentials, andɛis a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH1. Indeed, the set of admissibleH1isCωdense andC3open (a fortiori,Cωopen). Our perturbative technique for the genericity is valid in theCktopology for allk∈ [3, ∞) ∪ {∞,ω}.

     
    more » « less
  4. Abstract

    Emergent trends in the device development for neural prosthetics have focused on establishing stimulus localization, improving longevity through immune compatibility, reducing energy re-quirements, and embedding active control in the devices. Ultrasound stimulation can single-handedly address several of these challenges. Ultrasonic stimulus of neurons has been studied extensively from 100 kHz to 10 MHz, with high penetration but less localization. In this paper, a chip-scale device consisting of piezoelectric Aluminum Nitride ultrasonic transducers was engineered to deliver gigahertz (GHz) ultrasonic stimulus to the human neural cells. These devices provide a path towards complementary metal oxide semiconductor (CMOS) integration towards fully controllable neural devices. At GHz frequencies, ultrasonic wavelengths in water are a few microns and have an absorption depth of 10–20 µm. This confinement of energy can be used to control stimulation volume within a single neuron. This paper is the first proof-of-concept study to demonstrate that GHz ultrasound can stimulate neuronsin vitro. By utilizing optical calcium imaging, which records calcium ion flux indicating occurrence of an action potential, this paper demonstrates that an application of a nontoxic dosage of GHz ultrasonic waves$$(\ge 0.05\frac{W}{c{m}^{2}})$$(0.05Wcm2)caused an average normalized fluorescence intensity recordings >1.40 for the calcium transients. Electrical effects due to chip-scale ultrasound delivery was discounted as the sole mechanism in stimulation, with effects tested atα = 0.01 statistical significance amongst all intensities and con-trol groups. Ionic transients recorded optically were confirmed to be mediated by ion channels and experimental data suggests an insignificant thermal contributions to stimulation, with a predicted increase of 0.03oCfor$$1.2\frac{W}{c{m}^{2}}\cdot $$1.2Wcm2This paper paves the experimental framework to further explore chip-scale axon and neuron specific neural stimulation, with future applications in neural prosthetics, chip scale neural engineering, and extensions to different tissue and cell types.

     
    more » « less
  5. Abstract

    We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sampleMBHranges from 105.1Mto 108.2M. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg-band luminosity function can be well described by a broken power law ofϕ(Lg)Lg/Lbk0.3+Lg/Lbk2.61, withLbk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (MBH/M) ≲ 107.3, the TDE mass function followsϕ(MBH)MBH0.25, which favors a flat local BH mass function (dnBH/dlogMBHconstant). We confirm the significant rate suppression at the high-mass end (MBH≳ 107.5M), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofMgal∼ 1010M, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors.

     
    more » « less