Sopory, SK
(Ed.)
As sessile organisms, plants are constantly exposed to a variety of environmental stresses that have detrimental effects on their growth and development, leading to major crop yield losses worldwide. To cope with adverse conditions plants have developed several adaptive mechanisms. A thorough understanding these mechanisms is critical to generate plants for the future. The heterotrimeric G-protein complex, composed of Gα, Gβ, and Gγ subunits, participates in regulation of multiple cellular signaling pathways and have multifaceted roles in regulating stress responses of plants. The complex has two functional entities, the GTP-bound Gα subunit and the Gβγ dimer, both of which by interacting with additional proteins can activate various signaling networks. The involvement of G-proteins has been shown in plants’ response to drought, salinity, extreme temperatures, heavy metal, ozone, and UV-B radiation. Due to their versatility and the number of processes modulated by them, G-proteins have emerged as key targets for generating stress tolerant crops. In this review, we provide an overview of the current knowledge of the roles of G proteins in abiotic stress tolerance, with examples from model plant Arabidopsis thaliana, where these processes are most widely studied and from additional agriculturally relevant crops, where their potential is realized for human usage.
more »
« less
An official website of the United States government
