skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for coseismic subsidence events in a southern California coastal saltmarsh
Abstract Paleoenvironmental records from a southern California coastal saltmarsh reveal evidence for repeated late Holocene coseismic subsidence events. Field analysis of sediment gouge cores established discrete lithostratigraphic units extend across the wetland. Detailed sediment analyses reveal abrupt changes in lithology, percent total organic matter, grain size, and magnetic susceptibility. Microfossil analyses indicate that predominantly freshwater deposits bury relic intertidal deposits at three distinct depths. Radiocarbon dating indicates that the three burial events occurred in the last 2000 calendar years. Two of the three events are contemporaneous with large-magnitude paleoearthquakes along the Newport-Inglewood/Rose Canyon fault system. From these data, we infer that during large magnitude earthquakes a step-over along the fault zone results in the vertical displacement of an approximately 5-km2area that is consistent with the footprint of an estuary identified in pre-development maps. These findings provide insight on the evolution of the saltmarsh, coseismic deformation and earthquake recurrence in a wide area of southern California, and sensitive habitat already threatened by eustatic sea level rise.  more » « less
Award ID(s):
1140116
PAR ID:
10469672
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Scientific Reports
Volume:
7
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The San Gabriel, Chino, and San Bernardino sedimentary basins in Southern California amplify earthquake ground motions and prolong the duration of shaking due to the basins' shape and low seismic velocities. In the event of a major earthquake rupture along the southern segment of the San Andreas fault, their connection and physical proximity to Los Angeles (LA) can produce a waveguide effect and amplify strong ground motions. Improved estimates of the shape and depth of the sediment‐basement interface are needed for more accurate ground‐shaking models. We obtain a three‐dimensional basement map of the basins by integrating gravity and seismic measurements. The travel time of the sediment‐basementP‐to‐Sconversion, and the Bouguer gravity along 10 seismic lines, are combined to produce a linear relationship that is used to extend the 2D profiles to a 3D basin map. Basement depth is calculated using the predicted travel time constrained by gravity with anS‐wave velocity model of the area. The model is further constrained by the basement depths from 17 boreholes. The basement map shows the south‐central part of the San Gabriel basin is the deepest part and a significant gravity signature is associated with our interpretation of the Raymond fault. The Chino basin deepens toward the south and shallows northeastward. The San Bernardino basin deepens eastward along the edge of the San Jacinto Fault Zone. In addition, we demonstrate the benefit of using gravity data to aid in the interpretation of the sediment‐basement interface in receiver functions. 
    more » « less
  2. Abstract Centuries‐long intensive land‐use change in the north‐eastern United States provides the opportunity to study the timescale of geomorphic response to anthropogenic disturbances. In this region, forest‐clearing and agricultural practices following EuroAmerican settlement led to deposition of legacy sediment along valley bottoms, including behind mill dams. The South River in western Massachusetts experienced two generations of damming, beginning with mill dams up to 6‐m high in the eighteenth–nineteenth century, and followed by construction of the Conway Electric Dam (CED), a 17‐m‐tall hydroelectric dam near the watershed outlet in 1906. We use the mercury (Hg) concentration in upstream deposits along the South River to constrain the magnitude, source, and timing of inputs to the CED impoundment. Based on cesium‐137 (137Cs) chronology and results from a sediment mixing model, remobilized legacy sediment comprised% of the sediment load in the South River prior to 1954; thereafter, from 1954 to 1980s, erosion from glacial deposits likely dominated (63 ± 14%), but with legacy sediments still a substantial source (37 ± 14%). We also use the CED reservoir deposits to estimate sediment yield through time, and find it decreased after 1952. These results are consistent with high rates of mobilization of legacy sediment as historic dams breached in the early twentieth century, and suggest rapid initial response to channel incision, followed by a long decay in the second half of the century, that is likely dependent on large flood events to access legacy sediment stored in banks. Identifying sources of sediment in a watershed and quantifying erosion rates can help to guide river restoration practices. Our findings suggest a short fluvial recovery time from the eighteenth–nineteenth century to perturbation during the first half of the twentieth century, with subsequent return to a dominant long‐term signal from erosion of glacial deposits, with anthropogenic sediment persisting as a secondary source. © 2020 John Wiley & Sons, Ltd. 
    more » « less
  3. Abstract Understanding and modeling variability of ground motion is essential for building accurate and precise ground motion prediction equations, which can net site‐specific characterization and reduced hazard levels. Here, we explore the spatial variability in peak ground velocity (PGV) at Sage Brush Flats along the San Jacinto Fault in Southern California. We use data from a dense array (0.6 × 0.6 km2, 1,108 geophones, station spacings 10–30 m) deployed in 2014 for ~1 month. These data offer an opportunity to study small‐scale variability in this region. We examine 38 earthquakes (2 ≤ ML ≤ 4.2) within 200 km of the array. Fault strands and a small basin impact the ground motions, producing PGV variations up to 22% of the mean and a 40% reduction inPandSwave near‐surface velocities. We find along‐fault rupture directivity, source, and path effects can increase PGVs by 167%. Surface PGV measurements exceed the colocated borehole station (depth at 148 m) PGV by factors of 3–10, confirming the impact on PGV from near‐surface fault structures, basins, topography, and amplifications from soft sediments. Consistently, we find high PGVs within the basin structure. A pair of colocated GaML2.6 events produce repeatable PGV values with similar spatial patterns. The average corner frequencies of these two events are 11–16 Hz, and viable measurements of stress drop can differ by 6.45 MPa. Within this small array, the PGV values are variable implying spatial extrapolation of PGV to regions of known faults and basins, even across a small area, should be done with caution. 
    more » « less
  4. null (Ed.)
    The San Andreas fault has the highest calculated time-dependent probability for large-magnitude earthquakes in southern California. However, where the fault is multistranded east of the Los Angeles metropolitan area, it has been uncertain which strand has the fastest slip rate and, therefore, which has the highest probability of a destructive earthquake. Reconstruction of offset Pleistocene-Holocene landforms dated using the uranium-thorium soil carbonate and beryllium-10 surface exposure techniques indicates slip rates of 24.1 ± 3 millimeter per year for the San Andreas fault, with 21.6 ± 2 and 2.5 ± 1 millimeters per year for the Mission Creek and Banning strands, respectively. These data establish the Mission Creek strand as the primary fault bounding the Pacific and North American plates at this latitude and imply that 6 to 9 meters of elastic strain has accumulated along the fault since the most recent surface-rupturing earthquake, highlighting the potential for large earthquakes along this strand. 
    more » « less
  5. Abstract This study examines how fault dip and sediment strength influence along-strike variability in patterns of ground surface deformation during thrust and reverse fault earthquakes. Expanding on the 2D distinct element method (DEM) analysis by Chiama et al. (2023) and Chiama, Bednarz, et al. (2025), we develop 3D DEM models to investigate the influence of along-strike variability of geological site parameters on resultant morphologies of coseismic ruptures. The main fault scarp types—monoclinal, pressure ridge, and simple—are successfully reproduced in these 3D models, aligning with surface rupture characteristics previously identified in 2D modeling. Uniform fault dips and homogeneous sediment properties produce symmetrical (or cylindrical) fault scarps with uniform scarp morphologies, whereas local variations in fault dip, sediment strengths, and sediment thickness above the fault tip form a range of scarp geometries, deformation zone widths, and patterns of secondary fracturing. These 3D DEM models reproduce patterns of surface fault ruptures observed in natural settings. Overall, the 3D models support the relationships of ground surface deformation characteristics (scarp class, width, and height) with source and sediment properties established in the 2D DEM results of Chiama, Bednarz, et al. (2025). In addition, they provide new insights into how fault dip and sediment strength govern along-strike transitions in fault scarp morphology. In combination, the results of the 2D and 3D DEM model results can be used to infer patterns of surface ruptures based on local geological site conditions and fault characteristics. 
    more » « less