Nuclear actin has been implicated in regulating cell fate, differentiation, and cellular reprogramming. However, its roles in development and tissue homeostasis remain largely unknown. Here we uncover the role of nuclear actin in regulating stemness usingDrosophilaovarian germline stem cells (GSCs) as a model. We find that the localization and structure of nuclear actin is dynamic in the early germ cells. Nuclear actin recognized by anti-actin C4 is found in both the nucleoplasm and nucleolus of GSCs. The polymeric nucleoplasmic C4 pool is lost after the 2-cell stage, whereas the monomeric nucleolar pool persists to the 8-cell stage, suggesting that polymeric nuclear actin may contribute to stemness. To test this idea, we overexpressed nuclear targeted actin constructs to alter nuclear actin polymerization states in the GSCs and early germ cells. Increasing monomeric nuclear actin, but not polymerizable nuclear actin, causes GSC loss that ultimately results in germline loss. This GSC loss is rescued by simultaneous overexpression of monomeric and polymerizable nuclear actin. Together these data reveal that GSC maintenance requires polymeric nuclear actin. This polymeric nuclear actin likely plays numerous roles in the GSCs, as increasing monomeric nuclear actin disrupts nuclear architecture causing nucleolar hypertrophy, distortion of the nuclear lamina, and heterochromatin reorganization; all factors critical for GSC maintenance and function. These data provide the first evidence that nuclear actin, and in particular, its ability to polymerize, are critical for stem cell function and tissue homeostasisin vivo.
more »
« less
Dynamic nucleoskeleton in stress
The nucleoskeleton maintains nuclear integrity and chromatin organization at the inner nuclear surface. Here, Wang et al. revealed a disassociation of nuclear skeleton proteins from the nuclear periphery upon heat stress, which affects genome architecture and alters gene expression.
more »
« less
- Award ID(s):
- 2049931
- PAR ID:
- 10469691
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Plants
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2055-0278
- Page Range / eLocation ID:
- 1010 to 1011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cancer cell migration through narrow constrictions generates compressive stresses on the nucleus that deform it and cause rupture of nuclear membranes. Nuclear membrane rupture allows uncontrolled exchange between nuclear and cytoplasmic contents. Local tensile stresses can also cause nuclear deformations, but whether such deformations are accompanied by nuclear membrane rupture is unknown. Here we used a direct force probe to locally deform the nucleus by applying a transient tensile stress to the nuclear membrane. We found that a transient (∼0.2 s) deformation (∼1% projected area strain) in normal mammary epithelial cells (MCF-10A cells) was sufficient to cause rupture of the nuclear membrane. Nuclear membrane rupture scaled with the magnitude of nuclear deformation and the magnitude of applied tensile stress. Comparison of diffusive fluxes of nuclear probes between wild-type and lamin-depleted MCF-10A cells revealed that lamin A/C, but not lamin B2, protects the nuclear membranes against rupture from tensile stress. Our results suggest that transient nuclear deformations typically caused by local tensile stresses are sufficient to cause nuclear membrane rupture.more » « less
-
Chromatin is an essential component of nuclear mechanical response and shape that maintains nuclear compartmentalization and function. However, major genomic functions, such as transcription activity, might also impact cell nuclear shape via blebbing and rupture through their effects on chromatin structure and dynamics. To test this idea, we inhibited transcription with several RNA polymerase II inhibitors in wild type cells and perturbed cells that present increased nuclear blebbing. Transcription inhibition suppresses nuclear blebbing for several cell types, nuclear perturbations, and transcription inhibitors. Furthermore, transcription inhibition suppresses nuclear bleb formation, bleb stabilization, and bleb-based nuclear ruptures. Interestingly, transcription inhibition does not alter either H3K9 histone modification state, nuclear rigidity, or actin compression and contraction, which typically control nuclear blebbing. Polymer simulations suggest that RNA pol II motor activity within chromatin could drive chromatin motions that deform the nuclear periphery. Our data provide evidence that transcription inhibition suppresses nuclear blebbing and rupture, separate and distinct from chromatin rigidity.more » « less
-
Discher, Dennis (Ed.)The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse-intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy ( LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of -DCM remains incompletely understood. Using induced-pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA-mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared with healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggests that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM.more » « less
-
Nuclear reactor safety is unique in that even after an incident is identified and the reactor shut down, the possibility of damage to people and environment does not stop: there is a long tail to the incident due to decay heat and potential for radiation leakage, which must also be contained properly, as exemplified in Fukushima where most radiation releases happened after initial earthquake and plant shut-down. Nuclear reactors generate close to 20% of the energy required by our nation. There is increasing interest in nuclear power as a low emissions alternative to fossil fuel-based power. Investments in the next generation of nuclear power plants include many nuclear startups such as NuScale and high-profile investments by Bill Gates’ Terra Power. Nuclear reactor operators are critical personnel who operate nuclear reactors, monitor the health of the operation, and are the first line of defense in case of an incident. Though the Nuclear Regulatory Commission creates and maintains standards and procedures for nuclear safety, their programmatic mandate involves are focused on existing technology, in the form of commercial nuclear power plants and other uses of nuclear materials through licensing, inspection and enforcement activities. This report summarizes the collected thoughts and insights from a diverse working group on the intersection of next generation technology with the training of future nuclear reactor operators.more » « less
An official website of the United States government

