skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neglected tropical diseases risk correlates with poverty and early ecosystem destruction
Abstract BackgroundNeglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of socioeconomic conditions on disease transmission risk remains poorly explored. MethodsThis study investigated the role of socioeconomic variables in the predictive capacity of risk models of neglected tropical zoonoses using a decade of epidemiological data (2007–2018) from Brazil. Vector-borne diseases investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmental sets of ecological niche models and their performances were compared. ResultsSocioeconomic variables were found to be as important as environmental variables in influencing the estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reaching a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic variable (37% relative variable importance, all individual models exhibitedP < 0.00), showing a decreasing relationship with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 2008 and 2018 was the most important environmental variable (42% relative variable importance,P < 0.05) among environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem destruction is on more advanced stages. ConclusionsDestruction of natural ecosystems coupled with low income explain macro-scale neglected tropical and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, public health strategies must target both reduction of poverty and cessation of destruction of natural forests and savannas.  more » « less
Award ID(s):
2116748
PAR ID:
10469778
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
BMC
Date Published:
Journal Name:
Infectious Diseases of Poverty
Volume:
12
Issue:
1
ISSN:
2049-9957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A comprehensive approach to integrated one health surveillance and responseSurveillance data plays a crucial role in understanding and responding to emerging infectious diseases; here, we learn why adopting a One Health surveillance approach to EIDs can help to protect human, animal, and environmental health. Over 75% of emerging infectious diseases (EIDs) affecting humans are zoonotic diseases with animal hosts, which can be transmitted by waterborne, foodborne, vector-borne, or air-borne pathways. (7) Early detection is important and allows for a rapid response through preventive and control measures. However, early detection of EIDs is hindered by several obstacles, such as climate change, which can alter habitats, leading to shifts in the distribution of disease- carrying vectors like mosquitoes and ticks. This can result in diseases such as malaria, dengue fever, and Lyme disease becoming more common in areas with established transmission or spreading to new areas entirely. (4) Environmental changes such as deforestation and urbanization disrupt ecosystems, increasing the likelihood of zoonotic disease spillover from wildlife to humans. In addition to working at the interface of these changes, detection and tracking of EIDs also requires sharing and standardization of complex data and integrating processes across different regions and health systems. 
    more » « less
  2. Abstract BackgroundAedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for differentAedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. MethodsWe searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). ResultsWe found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002–2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. ConclusionsHere we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping. 
    more » « less
  3. Abstract BackgroundVector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance. MethodsTo better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas. ResultsModels based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks. ConclusionsHotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection. 
    more » « less
  4. Abstract Zoonotic diseases represent 75% of emerging infectious diseases worldwide, and their emergence is mainly attributed to human‐driven changes in landscapes. Land use change, especially the conversion of natural areas to agricultural use, has the potential to impact hosts and vector dynamics, affecting pathogen transmission risk. While these links are becoming better understood, very few studies have investigated the opposite question—how native vegetation restoration affects zoonotic disease outbreaks.We reviewed the existing evidence linking native vegetation restoration with zoonotic transmission risk, identified knowledge gaps, and, by focusing on tropical areas, proposed forest restoration strategies that could help in limiting the spread of zoonotic diseases.We identified a large gap in information on the effects of native vegetation restoration on zoonotic diseases, especially within tropical regions. In addition, the few studies that exist do not consider environmental aspects that can affect the outcomes of restoration on disease risk, such as the land use history and landscape structural characteristics (as composition and configuration of native habitats). Our conceptual framework raises two important points: (1) the effects of forest restoration may depend on the context of the existing landscape, especially the percentage of native vegetation existing at the beginning of the restoration; and (2) these effects will also be dependent on the spatial arrangement of the restored area within the existing landscape. Furthermore, we propose important topics to be studied in the coming years to integrate zoonotic disease risk as a criterion in restoration planning.Synthesis and application. Our results contribute to a more comprehensive forest restoration planning, comprising multiple ecosystem services and resulting in healthier landscapes for both people and nature. Our framework could be integrated into the post‐2020 global biodiversity framework targets. 
    more » « less
  5. Abstract Arboviruses transmitted mainly byAedes(Stegomyia)aegyptiandAe. albopictus, including dengue, chikungunya, and Zika viruses, and yellow fever virus in urban settings, pose an escalating global threat. Existing risk maps, often hampered by surveillance biases, may underestimate or misrepresent the true distribution of these diseases and do not incorporate epidemiological similarities despite shared vector species. We address this by generating new global environmental suitability maps forAedes-borne arboviruses using a multi-disease ecological niche model with a nested surveillance model fit to a dataset of over 21,000 occurrence points. This reveals a convergence in suitability around a common global distribution with recent spread of chikungunya and Zika closely aligning with areas suitable for dengue. We estimate that 5.66 (95% confidence interval 5.64-5.68) billion people live in areas suitable for dengue, chikungunya and Zika and 1.54 (1.53-1.54) billion people for yellow fever. We find large national and subnational differences in surveillance capabilities with higher income more accessible areas more likely to detect, diagnose and report viral diseases, which may have led to overestimation of risk in the United States and Europe. When combined with estimates of uncertainty, these suitability maps can be used by ministries of health to target limited surveillance and intervention resources in new strategies against these emerging threats. 
    more » « less