skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimally Scheduling Heterogeneous Impatient Customers
Problem definition: We study scheduling multi-class impatient customers in parallel server queueing systems. At the time of arrival, customers are identified as being one of many classes, and the class represents the service and patience time distributions as well as cost characteristics. From the system’s perspective, customers of the same class at time of arrival get differentiated on their residual patience time as they wait in queue. We leverage this property and propose two novel and easy-to-implement multi-class scheduling policies. Academic/practical relevance: Scheduling multi-class impatient customers is an important and challenging topic, especially when customers’ patience times are nonexponential. In these contexts, even for customers of the same class, processing them under the first-come, first-served (FCFS) policy is suboptimal. This is because, at time of arrival, the system only knows the overall patience distribution from which a customer’s patience value is drawn, and as time elapses, the estimate of the customer’s residual patience time can be further updated. For nonexponential patience distributions, such an update indeed reveals additional information, and using this information to implement within-class prioritization can lead to additional benefits relative to the FCFS policy. Methodology: We use fluid approximations to analyze the multi-class scheduling problem with ideas borrowed from convex optimization. These approximations are known to perform well for large systems, and we use simulations to validate our proposed policies for small systems. Results: We propose a multi-class time-in-queue policy that prioritizes both across customer classes and within each class using a simple rule and further show that most of the gains of such a policy can be achieved by deviating from within-class FCFS for at most one customer class. In addition, for systems with exponential patience times, our policy reduces to a simple priority-based policy, which we prove is asymptotically optimal for Markovian systems with an optimality gap that does not grow with system scale. Managerial implications: Our work provides managers ways of improving quality of service to manage parallel server queueing systems. We propose easy-to-implement policies that perform well relative to reasonable benchmarks. Our work also adds to the academic literature on multi-class queueing systems by demonstrating the joint benefits of cross- and within-class prioritization. Funding: A. Bassamboo received financial support from the National Science Foundation [Grant CMMI 2006350]. C. (A.) Wu received financial support from the Hong Kong General Research Fund [Early Career Scheme, Project 26206419]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1190 .  more » « less
Award ID(s):
2006350
PAR ID:
10469789
Author(s) / Creator(s):
; ;  
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Manufacturing & Service Operations Management
Volume:
25
Issue:
3
ISSN:
1523-4614
Page Range / eLocation ID:
1066 to 1080
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study matching queues with abandonment. The simplest of these is the two-sided queue with servers on one side and customers on the other, both arriving dynamically over time and abandoning if not matched by the time their patience elapses. We identify nonasymptotic and universal scaling laws for the matching loss due to abandonment, which we refer to as the “cost of impatience.” The scaling laws characterize the way in which this cost depends on the arrival rates and the (possibly different) mean patience of servers and customers. Our characterization reveals four operating regimes identified by an operational measure of patience that brings together mean patience and utilization. The four regimes subsume the regimes that arise in asymptotic (heavy-traffic) approximations. The scaling laws, specialized to each regime, reveal the fundamental structure of the cost of impatience and show that its order of magnitude is fully determined by (i) a “winner-take-all” competition between customer impatience and utilization, and (ii) the ability to accumulate inventory on the server side. Practically important is that when servers are impatient, the cost of impatience is, up to an order of magnitude, given by an insightful expression where only the minimum of the two patience rates appears. Considering the trade-off between abandonment and capacity costs, we characterize the scaling of the optimal safety capacity as a function of costs, arrival rates, and patience parameters. We prove that the ability to hold inventory of servers means that the optimal safety capacity grows logarithmically in abandonment cost and, in turn, slower than the square-root growth in the single-sided queue. This paper was accepted by Baris Ata, stochastic models and simulation. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01513 . 
    more » « less
  2. The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the M/GI/s+GI queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation. 
    more » « less
  3. We study the problem of maximizing payoff generated over a period of time in a general class of closed queueing networks with a finite, fixed number of supply units that circulate in the system. Demand arrives stochastically, and serving a demand unit (customer) causes a supply unit to relocate from the “origin” to the “destination” of the customer. The key challenge is to manage the distribution of supply in the network. We consider general controls including customer entry control, pricing, and assignment. Motivating applications include shared transportation platforms and scrip systems. Inspired by the mirror descent algorithm for optimization and the backpressure policy for network control, we introduce a rich family of mirror backpressure (MBP) control policies. The MBP policies are simple and practical and crucially do not need any statistical knowledge of the demand (customer) arrival rates (these rates are permitted to vary in time). Under mild conditions, we propose MBP policies that are provably near optimal. Specifically, our policies lose at most [Formula: see text] payoff per customer relative to the optimal policy that knows the demand arrival rates, where K is the number of supply units, T is the total number of customers over the time horizon, and η is the demand process’ average rate of change per customer arrival. An adaptation of MBP is found to perform well in numerical experiments based on data from NYC Cab. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Funding: Y. Kanoria was supported by the National Science Foundation’s Division of Civil, Mechanical, and Manufacturing Innovation [Grant CMMI-1653477]. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4934 . 
    more » « less
  4. Motivated by a service platform, we study a two-sided network where heterogeneous demand (customers) and heterogeneous supply (workers) arrive randomly over time to get matched. Customers and workers arrive with a randomly sampled patience time (also known as reneging time in the literature) and are lost if forced to wait longer than that time to be matched. The system dynamics depend on the matching policy, which determines when to match a particular customer class with a particular worker class. Matches between classes use the head-of-line customer and worker from each class. Since customer and worker arrival processes can be very general counting processes, and the reneging times can be sampled from any finite mean distribution that is absolutely continuous, the state descriptor must track the age-in-system for every customer and worker waiting in order to be Markovian, as well as the time elapsed since the last arrival for every class. We develop a measure-valued fluid model that approximates the evolution of the discrete-event stochastic matching model and prove its solution is unique under a fixed matching policy. For a sequence of matching models, we establish a tightness result for the associated sequence of fluid-scaled state descriptors and show that any distributional limit point is a fluid model solution almost surely. When arrival rates are constant, we characterize the invariant states of the fluid model solution and show convergence to these invariant states as time becomes large. Finally, again when arrival rates are constant, we establish another tightness result for the sequence of fluid-scaled state descriptors distributed according to a stationary distribution and show that any subsequence converges to an invariant state. As a consequence, the fluid and time limits can be interchanged, which justifies regarding invariant states as first order approximations to stationary distributions. 
    more » « less
  5. We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job sizes, to asymptotically optimize the response time tail. This means scheduling to make P[T > t], the chance a job's response time exceeds t, decay as quickly as possible in the t \to \infty limit. For some time, the best known policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[T > t] ~ C e^-γ t . FCFS achieves the optimal decay rate γ, but its tail constant C is suboptimal. Only recently have policies that improve upon FCFS's tail constant been discovered. But it is unknown what the optimal tail constant is, let alone what policy might achieve it. In this paper, we derive a closed-form expression for the optimal tail constant C, and we introduce γ-Boost, a new policy that achieves this optimal tail constant. Roughly speaking, γ-Boost operates similarly to FCFS, but it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response time of small jobs without unduly delaying large jobs, improving upon FCFS's tail constant by up to 50% with only moderate job size variability, with even larger improvements for higher variability. While these results are for systems with full job size information, we also introduce and analyze a version of γ-Boost that works in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we show via simulation that γ-Boost has excellent practical performance. 
    more » « less