skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selection-driven trait loss in independently evolved cavefish populations
Abstract Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra,Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.  more » « less
Award ID(s):
1933076
PAR ID:
10469795
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Friedman, Jannice; Wolf, Jason (Ed.)
    Abstract Abiotic and biotic factors interact to influence phenotypic evolution; however, identifying the causal agents of selection that drive the evolution and expression of traits remains challenging. In a field common garden, we manipulated water availability and herbivore abundance across 3 years, and evaluated clinal variation in functional traits and phenology, phenotypic plasticity, local adaptation, and selection using diverse accessions of the perennial forb, Boechera stricta. Consistent with expectations, drought stress exacerbated damage from herbivores. We found significant plasticity and genetic clines in foliar and phenological traits. Water availability and herbivory interacted to exert selection, even on traits like flowering duration, which showed no clinal variation. Furthermore, the direction of selection on specific leaf area in response to water availability mirrored the genetic cline and plasticity, suggesting that variation in water levels across the landscape influences the evolution of this trait. Finally, both herbivory and water availability likely contribute to local adaptation. This work emphasizes the additive and synergistic roles of abiotic and biotic factors in shaping phenotypic variation across environmental gradients. 
    more » « less
  2. Rogers, Rebekah; Cozzolino, Salvatore (Ed.)
    Abstract Plants have the ability to transmit mutations to progeny that arise through both meiotic and mitotic (somatic) cell divisions. This is because the same meristem cells responsible for vegetative growth will also generate gametes for sexual reproduction. Despite the potential for somatic mutations to contribute to genetic variation and adaptation, their role in plant evolution remains largely unexplored. We conducted experiments with the bush monkeyflower (Mimulus aurantiacus) to assess the phenotypic effects of somatic mutations inherited across generations. By generating self-pollinations within a flower (autogamy) or between flowers on different stems of the same plant (geitonogamy), we tracked the effects of somatic mutations transmitted to progeny. Autogamy and geitonogamy lead to different segregation patterns of somatic mutations among stems, with only autogamy resulting in offspring that are homozygous for somatic mutations specific to that stem. This allowed us to compare average phenotypic differences between pollination treatments that could be attributed to the inheritance of somatic variants. While most experimental units showed no impacts on fitness, in some cases, we detected increased seed production, as well as significant increases in drought tolerance, even though M. aurantiacus is already well adapted to drought conditions. We also found increased variance in drought tolerance following autogamy, consistent with the hypothesis that somatic mutations transmitted between generations can impact fitness. These results highlight the potential role of inherited somatic mutations as a relevant source of genetic variation in plant evolution. 
    more » « less
  3. Throughout the evolutionary tree, there are gains and losses of morphological features, physiological processes, and behavioral patterns. Losses are perhaps nowhere so prominent as for subterranean organisms, which typically show reductions or losses of eyes and pigment. These losses seem easy to explain without recourse to natural selection. Its most modern form is the accumulation of selectively neutral, structurally reducing mutations. Selectionist explanations include direct selection, often involving metabolic efficiency in resource poor subterranean environments, and pleiotropy, where genes affecting eyes and pigment have other effects, such as increasing extra-optic sensory structures. This dichotomy echoes the debate in evolutionary biology in general about the sufficiency of natural selection as an explanation of evolution, e.g., Kimura’s neutral mutation theory. Tests of the two hypotheses have largely been one-sided, with data supporting that one or the other processes is occurring. While these tests have utilized a variety of subterranean organisms, the Mexican cavefish,Astyanax mexicanus, which has eyed extant ancestral-like surface fish conspecifics, is easily bred in the lab, and whose whole genome has been sequenced, is the favored experimental organism. However, with few exceptions, tests for selection versus neutral mutations contain limitations or flaws. Notably, these tests are often one sided, testing for the presence of one or the other process. In fact, it is most likely that both processes occur and make a significant contribution to the two most studied traits in cave evolution: eye and pigment reduction. Furthermore, narrow focus on neutral mutation hypothesis versus selection to explain cave-evolved traits often fails, at least in the simplest forms of these hypotheses, to account for aspects that are likely essential for understanding cave evolution: migration or epigenetic effects. Further, epigenetic effects and phenotypic plasticity have been demonstrated to play an important role in cave evolution in recent studies. Phenotypic plasticity does not by itself result in genetic change of course, but plasticity can reveal cryptic genetic variation which then selection can act on. These processes may result in a radical change in our thinking about evolution of subterranean life, especially the speed with which it may occur. Thus, perhaps it is better to ask what role the interaction of genes and environment plays, in addition to natural selection and neutral mutation. 
    more » « less
  4. Abstract Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in thePoecilia mexicanaspecies complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex. 
    more » « less
  5. SUMMARY Previous comparative and experimental evolution studies have suggested how fungi may rapidly adapt to new environments, but direct observation ofin situselection in fungal populations is rare due to challenges with tracking populations over human time scales. We monitored a population ofPenicillium solitumover eight years in a cheese cave and documented a phenotypic shift from predominantly green to white strains. Diverse mutations in thealb1gene, which encodes the first protein in the DHN-melanin biosynthesis pathway, explained the green to white shift. A similar phenotypic shift was recapitulated with analb1knockout and experimental evolution in laboratory populations. The most common genetic disruption of thealb1genomic region was caused by putative transposable element insertions upstream of the gene. White strains had substantial downregulation in global transcription, with genetically distinct white strains possessing divergent shifts in expression of different biological processes. White strains outcompeted green strains in co-culture, but this competitive advantage was only observed in the absence of light, suggesting that loss of melanin is only adaptive in dark conditions. Our results illustrate how fermented food production by humans provides opportunities for relaxed selection of key fungal traits over short time scales. Unintentional domestication of microbes by cheesemakers may provide opportunities to generate new strains for innovation in traditional cheese production. 
    more » « less