skip to main content


This content will become publicly available on October 19, 2024

Title: Implications of Snowpack Reactive Bromine Production for Arctic Ice Core Bromine Preservation
Abstract

Snowpack emissions are recognized as an important source of gas‐phase reactive bromine in the Arctic and are necessary to explain ozone depletion events in spring caused by the catalytic destruction of ozone by halogen radicals. Quantifying bromine emissions from snowpack is essential for interpretation of ice‐core bromine. We present ice‐core bromine records since the pre‐industrial (1750 CE) from six Arctic locations and examine potential post‐depositional loss of snowpack bromine using a global chemical transport model. Trend analysis of the ice‐core records shows that only the high‐latitude coastal Akademii Nauk (AN) ice core from the Russian Arctic preserves significant trends since pre‐industrial times that are consistent with trends in sea ice extent and anthropogenic emissions from source regions. Model simulations suggest that recycling of reactive bromine on the snow skin layer (top 1 mm) results in 9–17% loss of deposited bromine across all six ice‐core locations. Reactive bromine production from below the snow skin layer and within the snow photic zone is potentially more important, but the magnitude of this source is uncertain. Model simulations suggest that the AN core is most likely to preserve an atmospheric signal compared to five Greenland ice cores due to its high latitude location combined with a relatively high snow accumulation rate. Understanding the sources and amount of photochemically reactive snow bromide in the snow photic zone throughout the sunlit period in the high Arctic is essential for interpreting ice‐core bromine, and warrants further lab studies and field observations at inland locations.

 
more » « less
NSF-PAR ID:
10469885
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
20
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropospheric reactive bromine (Bry) influences the oxidation capacity of the atmosphere by acting as a sink for ozone and nitrogen oxides. Aerosol acidity plays a crucial role in Bryabundances through acid‐catalyzed debromination from sea‐salt‐aerosol, the largest global source. Bromine concentrations in a Russian Arctic ice‐core, Akademii Nauk, show a 3.5‐fold increase from pre‐industrial (PI) to the 1970s (peak acidity, PA), and decreased by half to 1999 (present day, PD). Ice‐core acidity mirrors this trend, showing robust correlation with bromine, especially after 1940 (r = 0.9). Model simulations considering anthropogenic emission changes alone show that atmospheric acidity is the main driver of Brychanges, consistent with the observed relationship between acidity and bromine. The influence of atmospheric acidity on Bryshould be considered in interpretation of ice‐core bromine trends.

     
    more » « less
  2. Abstract. We use the GEOS-Chem chemical transport model to examine theinfluence of bromine release from blowing-snow sea salt aerosol (SSA) onspringtime bromine activation and O3 depletion events (ODEs) in theArctic lower troposphere. We evaluate our simulation against observations oftropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment)and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3 years (2007–2009), as well asagainst surface observations of O3. We conduct a simulation withblowing-snow SSA emissions from first-year sea ice (FYI; with a surface snowsalinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snowsalinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surfacesnow relative to seawater. This simulation captures the magnitude ofobserved March–April GOME-2 and OMI VCDtropo to within 17 %, as wellas their spatiotemporal variability (r=0.76–0.85). Many of the large-scalebromine explosions are successfully reproduced, with the exception of eventsin May, which are absent or systematically underpredicted in the model. Ifwe assume a lower salinity on MYI (0.01 psu), some of the bromine explosionsevents observed over MYI are not captured, suggesting that blowing snow overMYI is an important source of bromine activation. We find that the modeledatmospheric deposition onto snow-covered sea ice becomes highly enriched inbromide, increasing from enrichment factors of ∼5 inSeptember–February to 10–60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment indeposition could enable blowing-snow-induced halogen activation to propagateinto May and might explain our late-spring underestimate in VCDtropo.We estimate that the atmospheric deposition of SSA could increase snow salinityby up to 0.04 psu between February and April, which could be an importantsource of salinity for surface snow on MYI as well as FYI covered by deepsnowpack. Inclusion of halogen release from blowing-snow SSA in oursimulations decreases monthly mean Arctic surface O3 by 4–8 ppbv(15 %–30 %) in March and 8–14 ppbv (30 %–40 %) in April. We reproduce atransport event of depleted O3 Arctic air down to 40∘ Nobserved at many sub-Arctic surface sites in early April 2007. While oursimulation captures 25 %–40 % of the ODEs observed at coastal Arctic surfacesites, it underestimates the magnitude of many of these events and entirelymisses 60 %–75 % of ODEs. This difficulty in reproducing observed surfaceODEs could be related to the coarse horizontal resolution of the model, theknown biases in simulating Arctic boundary layer exchange processes, thelack of detailed chlorine chemistry, and/or the fact that we did not includedirect halogen activation by snowpack chemistry. 
    more » « less
  3. Abstract

    Elevated concentrations of atmospheric bromine are known to cause ozone depletion in the Arctic, which is most frequently observed during springtime. We implement a detailed description of bromine and chlorine chemistry within the WRF‐Chem 4.1.1 model, and two different descriptions of Arctic bromine activation: (1) heterogeneous chemistry on surface snow on sea ice, triggered by ozone deposition to snow (Toyota et al., 2011https://doi.org/10.5194/acp-11-3949-2011), and (2) heterogeneous reactions on sea salt aerosols emitted through the sublimation of lofted blowing snow (Yang et al., 2008,https://doi.org/10.1029/2008gl034536). In both mechanisms, bromine activation is sustained by heterogeneous reactions on aerosols and surface snow. Simulations for spring 2012 covering the entire Arctic reproduce frequent and widespread ozone depletion events, and comparisons with observations of ozone show that these developments significantly improve model predictions during the Arctic spring. Simulations show that ozone depletion events can be initiated by both surface snow on sea ice, or by aerosols that originate from blowing snow. On a regional scale, in spring 2012, snow on sea ice dominates halogen activation and ozone depletion at the surface. During this period, blowing snow is a major source of Arctic sea salt aerosols but only triggers a few depletion events.

     
    more » « less
  4. Abstract

    Reactive chlorine and bromine species emitted from snow and aerosols can significantly alter the oxidative capacity of the polar boundary layer. However, halogen production mechanisms from snow remain highly uncertain, making it difficult for most models to include descriptions of halogen snow emissions and to understand the impact on atmospheric chemistry. We investigate the influence of Arctic halogen emissions from snow on boundary layer oxidation processes using a one‐dimensional atmospheric chemistry and transport model (PACT‐1D). To understand the combined impact of snow emissions and boundary layer dynamics on atmospheric chemistry, we model Cl2and Br2primary emissions from snow and include heterogeneous recycling of halogens on both snow and aerosols. We focus on a 2‐day case study from the 2009 Ocean‐Atmosphere‐Sea Ice‐Snowpack campaign at Utqiaġvik, Alaska. The model reproduces both the diurnal cycle and high quantity of Cl2observed, along with the measured concentrations of Br2, BrO, and HOBr. Due to the combined effects of emissions, recycling, vertical mixing, and atmospheric chemistry, reactive chlorine is typically confined to the lowest 15 m of the atmosphere, while bromine can impact chemistry up to and above the surface inversion height. Upon including halogen emissions and recycling, the concentration of HOx(HOx = OH + HO2) at the surface increases by as much as a factor of 30 at mid‐day. The change in HOxdue to halogen chemistry, as well as chlorine atoms derived from snow emissions, significantly reduce volatile organic compound lifetimes within a shallow layer near the surface.

     
    more » « less
  5. Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean. 
    more » « less