skip to main content

Title: The positive effect of plant diversity on soil carbon depends on climate

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.

more » « less
Award ID(s):
1831944 1655499
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Aims Climate warming in northern ecosystems is triggering widespread permafrost thaw, during which deep soil nutrients, such as nitrogen, could become available for biological uptake. Permafrost thaw shift frozen organic matter to a saturated state, which could impede nutrient uptake. We assessed whether soil nitrogen can be accessed by the deep roots of vascular plants in thermokarst bogs, potentially allowing for increases in primary productivity. Methods We conducted an ammonium uptake experiment on Carex aquatilis Wahlenb. roots excavated from thermokarst bogs in interior Alaska. Ammonium uptake capacity was compared between deep and shallow roots. We also quantified differences in root ammonium uptake capacity and plant size characteristics (plant aboveground and belowground biomass, maximum shoot height, and maximum root length) between the actively-thawing margin and the centre of each thermokarst bog as a proxy for time-following-thaw. Results Deep roots had greater ammonium uptake capacity than shallow roots, while rooting depth, but not belowground biomass, was positively correlated with aboveground biomass. Although there were no differences in aboveground biomass between the margin and centre, our findings suggest that plants can benefit from investing in the acquisition of resources near the vertical thaw front. Conclusions Our results suggest that deep roots of C. aquatilis can contribute to plant nitrogen uptake and are therefore able to tolerate anoxic conditions in saturated thermokarst bogs. This work furthers our understanding of how subarctic and wetland plants respond to warming and how enhanced plant biomass production might help offset ecosystem carbon release with future permafrost thaw. 
    more » « less
  2. Abstract

    Interest in land application of organic amendments—such as biosolids, composts, and manures—is growing due to their potential to increase soil carbon and help mitigate climate change, as well as to support soil health and regenerative agriculture. While organic amendments are predominantly applied to croplands, their application is increasingly proposed on relatively arid rangelands that do not typically receive fertilizers or other inputs, creating unique concerns for outcomes such as native plant diversity and water quality. To maximize environmental benefits and minimize potential harms, we must understand how soil, water, and plant communities respond to particular amendments and site conditions. We conducted a global meta‐analysis of 92 studies in which organic amendments had been added to arid, semiarid, or Mediterranean rangelands. We found that organic amendments, on average, provide some environmental benefits (increased soil carbon, soil water holding capacity, aboveground net primary productivity, and plant tissue nitrogen; decreased runoff quantity), as well as some environmental harms (increased concentrations of soil lead, runoff nitrate, and runoff phosphorus; increased soil CO2emissions). Published data were inadequate to fully assess impacts to native plant communities. In our models, adding higher amounts of amendment benefitted four outcomes and harmed two outcomes, whereas adding amendments with higher nitrogen concentrations benefitted two outcomes and harmed four outcomes. This suggests that trade‐offs among outcomes are inevitable; however, applying low‐N amendments was consistent with both maximizing benefits and minimizing harms. Short study time frames (median 1–2 years), limited geographic scope, and, for some outcomes, few published studies limit longer‐term inferences from these models. Nevertheless, they provide a starting point to develop site‐specific amendment application strategies aimed toward realizing the potential of this practice to contribute to climate change mitigation while minimizing negative impacts on other environmental goals.

    more » « less
  3. Abstract

    Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic‐functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic‐functional community composition of vegetation. We examined the relationships between the image‐derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River—where plant diversity and productivity were consistently higher—belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly.

    more » « less
  4. Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility1,2. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks3,4. It remains debated, however, whether such conclusions hold in natural ecosystems5-12. Here we analyse Canada's National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility. 
    more » « less
  5. Mineral stabilization of soil organic matter is an important regulator of the global carbon (C) cycle. However, the vulnerability of mineral-stabilized organic matter (OM) to climate change is currently unknown. We examined soil profiles from 34 sites across the conterminous USA to investigate how the abundance and persistence of mineral-associated organic C varied with climate at the continental scale. Using a novel combination of radiocarbon and molecular composition measurements, we show that the relationship between the abundance and persistence of mineral-associated organic matter (MAOM) appears to be driven by moisture availability. In wetter climates where precipitation exceeds evapotranspiration, excess moisture leads to deeper and more prolonged periods of wetness, creating conditions which favor greater root abundance and also allow for greater diffusion and interaction of inputs with MAOM. In these humid soils, mineral-associated soil organic C concentration and persistence are strongly linked, whereas this relationship is absent in drier climates. In arid soils, root abundance is lower, and interaction of inputs with mineral surfaces is limited by shallower and briefer periods of moisture, resulting in a disconnect between concentration and persistence. Data suggest a tipping point in the cycling of mineral-associated C at a climate threshold where precipitation equals evaporation. As climate patterns shift, our findings emphasize that divergence in the mechanisms of OM persistence associated with historical climate legacies need to be considered in process-based models. 
    more » « less