Abstract Protein serine/threonine/tyrosine (S/T/Y) phosphorylation is an essential and frequent post-translational modification in eukaryotes, but historically has been considered less prevalent in bacteria because fewer proteins were found to be phosphorylated and most proteins were modified to a lower degree. Recent proteomics studies greatly expanded the phosphoproteome of Escherichia coli to more than 2000 phosphorylation sites (phosphosites), yet mechanisms of action were proposed for only six phosphosites and fitness effects were described for 38 phosphosites upon perturbation. By systematically characterizing functional relevance of S/T/Y phosphorylation in E. coli metabolism, we found 44 of the 52 mutated phosphosites to be functional based on growth phenotypes and intracellular metabolome profiles. By effectively doubling the number of known functional phosphosites, we provide evidence that protein phosphorylation is a major regulation process in bacterial metabolism. Combining in vitro and in vivo experiments, we demonstrate how single phosphosites modulate enzymatic activity and regulate metabolic fluxes in glycolysis, methylglyoxal bypass, acetate metabolism and the split between pentose phosphate and Entner-Doudoroff pathways through mechanisms that include shielding the substrate binding site, limiting structural dynamics, and disrupting interactions relevant for activity in vivo.
more »
« less
An Inherent Difference between Serine and Threonine Phosphorylation: Phosphothreonine Strongly Prefers a Highly Ordered, Compact, Cyclic Conformation
Phosphorylation and dephosphorylation of proteins by kinases and phosphatases are central to cellular responses and function. The structural effects of serine and threonine phosphorylation were examined in peptides and in proteins, by circular dichroism, NMR spectroscopy, bioinformatics analysis of the PDB, small-molecule X-ray crystallography, and computational investigations. Phosphorylation of both serine and threonine residues induces substantial conformational restriction in their physiologically more important dianionic forms. Threonine exhibits a particularly strong disorder-to-order transition upon phosphorylation, with dianionic phosphothreonine preferentially adopting a cyclic conformation with restricted φ (φ ~ –60 ̊) stabilized by three noncovalent interactions: a strong intraresidue phosphate-amide hydrogen bond, an n→π* interaction between consecutive carbonyls, and an n→σ* interaction between the phosphate Oγ lone pair and the antibonding orbital of C–Hβ that restricts the χ2 side chain conformation. Proline is unique among the canonical amino acids for its covalent cyclization on the backbone. Phosphothreonine can mimic proline's backbone cyclization via noncovalent interactions. The preferred torsions of dianionic phosphothreonine are φ,ψ = polyproline II helix > α-helix (φ ~ –60 ̊); χ1 = g–; χ2 ~ +115 ̊ (eclipsed C–H/O–P bonds). This structural signature is observed in diverse proteins, including in the activation loops of protein kinases and in protein-protein interactions. In total, these results suggest a structural basis for the differential use and evolution of threonine versus serine phosphorylation sites in proteins, with serine phosphorylation typically inducing smaller, rheostat-like changes, versus threonine phosphorylation promoting larger, step function-like switches, in proteins.
more »
« less
- PAR ID:
- 10469921
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- ACS Chemical Biology
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1554-8929
- Page Range / eLocation ID:
- 1938 to 1958
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The regulation of the phosphorylation of mitogen activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation.more » « less
-
ABSTRACT Phosphorylation is a substantial posttranslational modification of proteins that refers to adding a phosphate group to the amino acid side chain after translation process in the ribosome. It is vital to coordinate cellular functions, such as regulating metabolism, proliferation, apoptosis, subcellular trafficking, and other crucial physiological processes. Phosphorylation prediction in a microbial organism can assist in understanding pathogenesis and host–pathogen interaction, drug and antibody design, and antimicrobial agent development. Experimental methods for predicting phosphorylation sites are costly, slow, and tedious. Hence low‐cost and high‐speed computational approaches are highly desirable. This paper presents a new deep learning tool called DeepPhoPred for predicting microbial phospho‐serine (pS), phospho‐threonine (pT), and phospho‐tyrosine (pY) sites. DeepPhoPred incorporates a two‐headed convolutional neural network architecture with the squeeze and excitation blocks followed by fully connected layers that jointly learn significant features from the peptide's structural and evolutionary information to predict phosphorylation sites. Our empirical results demonstrate that DeepPhoPred significantly outperforms the existing microbial phosphorylation site predictors with its highly efficient deep‐learning architecture. DeepPhoPred as a standalone predictor, all its source codes, and our employed datasets are publicly available athttps://github.com/faisalahm3d/DeepPhoPred.more » « less
-
Abstract Control of eukaryotic cellular function is heavily reliant on the phosphorylation of proteins at specific amino acid residues, such as serine, threonine, tyrosine, and histidine. Protein kinases that are responsible for this process comprise one of the largest families of evolutionarily related proteins. Dysregulation of protein kinase signaling pathways is a frequent cause of a large variety of human diseases including cancer, autoimmune, neurodegenerative, and cardiovascular disorders. In this study, we mapped all pathogenic mutations in 497 human protein kinase domains from the ClinVar database to the reference structure of Aurora kinase A (AURKA) and grouped them by the relevance to the disease type. Our study revealed that the majority of mutation hotspots associated with cancer are situated within the catalytic and activation loops of the kinase domain, whereas non‐cancer‐related hotspots tend to be located outside of these regions. Additionally, we identified a hotspot at residue R371 of the AURKA structure that has the highest number of exclusively non‐cancer‐related pathogenic mutations (21) and has not been previously discussed.more » « less
-
Chloroplast biogenesis, essential for photosynthesis, depends on the import of nuclear-encoded proteins through the translocon at the outer envelope of chloroplasts (TOC) complexes. Despite its importance, the mechanisms regulating this process remain largely elusive. We identify serine-260 (S260) as a critical phosphorylation site in Toc33, a core TOC component. This phosphorylation stabilizes Toc33 by preventing its ubiquitination and degradation. Constitutive triple response 1 (CTR1), a negative regulator of ethylene signaling, and its paralog RAF-like kinase are involved in phosphorylating Toc33. Disruption of Toc33 phosphorylation impairs its stability and photosynthetic protein import, consequently affecting chloroplast structural integrity and biogenesis. Our findings underscore the essential role of TOC phosphorylation in chloroplast biogenesis and reveal an unexpected regulatory network involving RAF-like kinases in organelle development.more » « less
An official website of the United States government

