skip to main content


Title: Signal intensity informed multi‐coil encoding operator for physics‐guided deep learning reconstruction of highly accelerated myocardial perfusion CMR
Purpose

To develop a physics‐guided deep learning (PG‐DL) reconstruction strategy based on a signal intensity informed multi‐coil (SIIM) encoding operator for highly‐accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR).

Methods

First‐pass perfusion CMR acquires highly‐accelerated images with dynamically varying signal intensity/SNR following the administration of a gadolinium‐based contrast agent. Thus, using PG‐DL reconstruction with a conventional multi‐coil encoding operator leads to analogous signal intensity variations across different time‐frames at the network output, creating difficulties in generalization for varying SNR levels. We propose to use a SIIM encoding operator to capture the signal intensity/SNR variations across time‐frames in a reformulated encoding operator. This leads to a more uniform/flat contrast at the output of the PG‐DL network, facilitating generalizability across time‐frames. PG‐DL reconstruction with the proposed SIIM encoding operator is compared to PG‐DL with conventional encoding operator, split slice‐GRAPPA, locally low‐rank (LLR) regularized reconstruction, low‐rank plus sparse (L + S) reconstruction, and regularized ROCK‐SPIRiT.

Results

Results on highly accelerated free‐breathing first pass myocardial perfusion CMR at three‐fold SMS and four‐fold in‐plane acceleration show that the proposed method improves upon the reconstruction methods use for comparison. Substantial noise reduction is achieved compared to split slice‐GRAPPA, and aliasing artifacts reduction compared to LLR regularized reconstruction, L + S reconstruction and PG‐DL with conventional encoding. Furthermore, a qualitative reader study indicated that proposed method outperformed all methods.

Conclusion

PG‐DL reconstruction with the proposed SIIM encoding operator improves generalization across different time‐frames /SNRs in highly accelerated perfusion CMR.

 
more » « less
Award ID(s):
1651825
NSF-PAR ID:
10469967
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Magn Reson Med
Date Published:
Journal Name:
Magnetic Resonance in Medicine
Volume:
89
Issue:
1
ISSN:
0740-3194
Page Range / eLocation ID:
308 to 321
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose

    To develop and evaluate a simultaneous multislice (SMS) reconstruction technique that provides noise reduction and leakage blocking for highly accelerated cardiac MRI.

    Methods

    ReadOutConcatenatedk‐space SPIRiT (ROCK‐SPIRiT) uses the concept of readout concatenation in image domain to represent SMS encoding, and performs coil self‐consistency as in SPIRiT‐type reconstruction in an extended k‐space, while allowing regularization for further denoising. The proposed method is implemented with and without regularization, and validated on retrospectively SMS‐accelerated cine imaging with three‐fold SMS and two‐fold in‐plane acceleration. ROCK‐SPIRiT is compared with two leakage‐blocking SMS reconstruction methods: readout‐SENSE‐GRAPPA and split slice–GRAPPA. Further evaluation and comparisons are performed using prospectively SMS‐accelerated cine imaging.

    Results

    Results on retrospectively three‐fold SMS and two‐fold in‐plane accelerated cine imaging show that ROCK‐SPIRiT without regularization significantly improves on existing methods in terms of PSNR (readout‐SENSE‐GRAPPA: 33.5 ± 3.2, split slice–GRAPPA: 34.1 ± 3.8, ROCK‐SPIRiT: 35.0 ± 3.3) and SSIM (readout‐SENSE‐GRAPPA: 84.4 ± 8.9, split slice–GRAPPA: 85.0 ± 8.9, ROCK‐SPIRiT: 88.2 ± 6.6 [in percentage]). Regularized ROCK‐SPIRiT significantly outperforms all methods, as characterized by these quantitative metrics (PSNR: 37.6 ± 3.8, SSIM: 94.2 ± 4.1 [in percentage]). The prospectively five‐fold SMS and two‐fold in‐plane accelerated data show that ROCK‐SPIRiT and regularized ROCK‐SPIRiT have visually improved image quality compared with existing methods.

    Conclusion

    The proposed ROCK‐SPIRiT technique reduces noise and interslice leakage in accelerated SMS cardiac cine MRI, improving on existing methods both quantitatively and qualitatively.

     
    more » « less
  2. Purpose

    To develop a scan‐specific model that estimates and corrects k‐space errors made when reconstructing accelerated MRI data.

    Methods

    Scan‐specific artifact reduction in k‐space (SPARK) trains a convolutional‐neural‐network to estimate and correct k‐space errors made by an input reconstruction technique by back‐propagating from the mean‐squared‐error loss between an auto‐calibration signal (ACS) and the input technique’s reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan‐specific models, such as robust artificial‐neural‐networks for k‐space interpolation (RAKI) and residual‐RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual‐RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC‐) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave‐encoded imaging.

    Results

    SPARK yields SSIM improvement and 1.5 – 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan‐specific techniques. When applied to advanced reconstruction techniques such as residual‐RAKI, 2D VC‐GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non‐Cartesian, 2D and 3D wave‐encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements.

    Conclusion

    SPARK synergizes with physics‐based acquisition and reconstruction techniques to improve accelerated MRI by training scan‐specific models to estimate and correct reconstruction errors in k‐space.

     
    more » « less
  3. This study introduces a technique for simultaneous multislice (SMS) cardiac magnetic resonance fingerprinting (cMRF), which improves the slice coverage when quantifying myocardialT1,T2, andM0. The single‐slice cMRF pulse sequence was modified to use multiband (MB) RF pulses for SMS imaging. Different RF phase schedules were used to excite each slice, similar to POMP or CAIPIRINHA, which imparts tissues with a distinguishable and slice‐specific magnetization evolution over time. Because of the high net acceleration factor (R = 48 in plane combined with the slice acceleration), images were first reconstructed with a low rank technique before matching data to a dictionary of signal timecourses generated by a Bloch equation simulation. The proposed method was tested in simulations with a numerical relaxation phantom. Phantom and in vivo cardiac scans of 10 healthy volunteers were also performed at 3 T. With single‐slice acquisitions, the mean relaxation times obtained using the low rank cMRF reconstruction agree with reference values. The low rank method improves the precision inT1andT2for both single‐slice and SMS cMRF, and it enables the acquisition of maps with fewer artifacts when using SMS cMRF at higher MB factors. With this technique, in vivo cardiac maps were acquired from three slices simultaneously during a breathhold lasting 16 heartbeats. SMS cMRF improves the efficiency and slice coverage of myocardialT1andT2mapping compared with both single‐slice cMRF and conventional cardiac mapping sequences. Thus, this technique is a first step toward whole‐heart simultaneousT1andT2quantification with cMRF.

     
    more » « less
  4. Purpose

    To develop a non‐Cartesian k‐space reconstruction method using self‐calibrated region‐specific interpolation kernels for highly accelerated acquisitions.

    Methods

    In conventional non‐Cartesian GRAPPA with through‐time GRAPPA (TT‐GRAPPA), the use of region‐specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT‐GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self‐calibrated Interpolation of Non‐Cartesian data with GRAPPA (SING) to self‐calibrate region‐specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region‐specific interpolation kernel geometry, and uses a novel local k‐space regularization through an extension of TT‐GRAPPA. This calibration approach is used to reconstruct non‐Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate‐gradient SENSE and TT‐GRAPPA in numerical phantoms and in vivo cine data sets.

    Results

    In both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT‐GRAPPA, and provides improved reconstruction quality over conjugate‐gradient SENSE. Furthermore, temporal fidelity in SING and TT‐GRAPPA is similar for the same acceleration rates. G‐factor evaluation over the heart shows that SING and TT‐GRAPPA provide similar noise amplification at moderate and high rates.

    Conclusion

    The proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT‐GRAPPA.

     
    more » « less
  5. Purpose

    To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.

    Theory

    Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.

    Methods

    The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.

    Results

    Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.

    Conclusion

    The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.

     
    more » « less