skip to main content

Title: Evaluating osteogenic effects associated with the incorporation of ascorbic acid in mineralized collagen scaffolds

Current treatments for craniomaxillofacial (CMF) defects motivate the design of instructive biomaterials that can promote osteogenic healing of complex bone defects. We report methods to promote in vitro osteogenesis of human mesenchymal stem cells (hMSCs) within a model mineralized collagen scaffold via the incorporation of ascorbic acid (vitamin C), a key factor in collagen biosynthesis and bone mineralization. An addition of 5 w/v% ascorbic acid into the base mineralized collagen scaffold significantly changes key morphology characteristics including porosity, macrostructure, and microstructure. This modification promotes hMSC metabolic activity, ALP activity, and hMSC‐mediated deposition of calcium and phosphorous. Additionally, the incorporation of ascorbic acid influences osteogenic gene expression (BMP‐2,RUNX2,COL1A2) and delays the expression of genes associated with osteoclast activity and bone resorption (OPN,CTSK), though it reduces the secretion of OPG. Together, these findings highlight ascorbic acid as a relevant component for mineralized collagen scaffold design to promote osteogenic differentiation and new bone formation for improved CMF outcomes.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Medium: X Size: p. 336-347
["p. 336-347"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Collagen I interactions with integrins α1and α2are known to support human mesenchymal stem cell (hMSC) osteogenesis. Nonetheless, elucidating the relative impact of specific integrin interactions has proven challenging, in part due to the complexity of native collagen. In the present work, we employed two collagen‐mimetic proteins—Scl2‐2 and Scl2‐3— to compare the osteogenic effects of integrin α1versus α2signaling. Scl2‐2 and Scl2‐3 were both derived from Scl2‐1, a triple helical protein lacking known cell adhesion, cytokine binding, and matrix metalloproteinase sites. However, Scl2‐2 and Scl2‐3 were each engineered to display distinct collagen‐based cell adhesion motifs: GFPGER (binding integrins α1and α2) or GFPGEN (binding only integrin α1), respectively. hMSCs were cultured within poly(ethylene glycol) (PEG) hydrogels containing either Scl2‐2 or Scl2‐3 for 2 weeks. PEG‐Scl2‐2 gels were associated with increased hMSC osterix expression, osteopontin production, and calcium deposition relative to PEG‐Scl2‐3 gels. These data indicate that integrin α2signaling may have an increased osteogenic effect relative to integrin α1. Since p38 is activated by integrin α2but not by integrin α1, hMSCs were further cultured in PEG‐Scl2‐2 hydrogels in the presence of a p38 inhibitor. Results suggest that p38 activity may play a key role in collagen‐supported hMSC osteogenesis. This knowledge can be used toward the rational design of scaffolds which intrinsically promote hMSC osteogenesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2594–2604, 2018.

    more » « less
  2. Abstract

    Poly(lactide‐co‐glycolide) (PLGA) has been widely used as a tissue engineering scaffold. However, conventional PLGA scaffolds are not injectable, and do not support direct cell encapsulation, leading to poor cell distribution in 3D. Here, a method for fabricating injectable and intercrosslinkable PLGA microribbon‐based macroporous scaffolds as 3D stem cell niche is reported. PLGA is first fabricated into microribbon‐shape building blocks with tunable width using microcontact printing, then coated with fibrinogen to enhance solubility and injectability using aqueous solution. Upon mixing with thrombin, firbornogen‐coated PLGA microribbons can intercrosslink into 3D scaffolds. When subject to cyclic compression, PLGA microribbon scaffolds exhibit great shock‐absorbing capacity and return to their original shape, while conventional PLGA scaffolds exhibit permanent deformation after one cycle. Using human mesenchymal stem cells (hMSCs) as a model cell type, it is demonstrated that PLGA μRB scaffolds support homogeneous cell encapsulation, and robust cell spreading and proliferation in 3D. After 28 days of culture in osteogenic medium, hMSC‐seeded PLGA μRB scaffolds exhibit an increase in compressive modulus and robust bone formation as shown by staining of alkaline phosphatase, mineralization, and collagen. Together, the results validate PLGA μRBs as a promising injectable, macroporous, non‐hydrogel‐based scaffold for cell delivery and tissue regeneration applications.

    more » « less
  3. Abstract

    Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well‐known insulin‐mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage‐specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone‐specific genes. This study demonstrates the feasibility of ZnO‐containing composites as a potential scaffold for osteochondral tissue engineering.

    more » « less
  4. Abstract

    Studies have shown that long non‐coding RNA (lncRNA) MEG3 plays a key role in osteoporosis (OP), but its regulatory mechanism is somewhat incompletely clear. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA‐214 (miR‐214) and thioredoxin‐interacting protein (TXNIP). Rat models of OP were established. MEG3, miR‐214 and TXNIP mRNA expression in rat femoral tissues were detected, along with TXNIP, OPG and RANKL protein expression. BMD, BV/TV, Tb.N and Tb.Th in tissue samples were measured. Ca, P and ALP contents in rat serum were also determined. Primary osteoblasts were isolated and cultured. Viability, COL‐I, COL‐II and COL‐Χ mRNA expression, PCNA, cyclin D1, OCN, RUNX2 and osteolix protein expresion, ALP content and activity, and mineralized nodule area of rat osteoblasts were further detected. Dual‐luciferase reporter gene and RNA‐pull down assays verified the targeting relationship between MEG3, miR‐214 and TXNIP. MEG3 and TXNIP were up‐regulated while miR‐214 was down‐regulated in femoral tissues of OP rats. MEG3 silencing and miR‐214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, trabecular bone area, collagen area and OPG expression, and down‐regulated RANKL of femoral tissues in OP rats. MEG3 silencing and miR‐214 overexpression elevated Ca and P and reduced ALP in OP rat serum, elevated osteoblast viability, differentiation ability, COL‐I and COL‐Χ expression and ALP activity, and reduced COL‐II expression of osteoblasts. MEG3 specifically bound to miR‐214 to regulate TXNIP. MEG3 silencing and miR‐214 overexpression promote proliferation and differentiation of osteoblasts in OP by down‐regulating TXNIP, which further improves OP.

    more » « less
  5. Abstract

    Biomimetically mineralized collagen scaffolds are promising for bone regeneration, but vascularization of these materials remains to be addressed. Here, we engineered mineralized scaffolds using an osteopontin‐guided polymer‐induced liquid‐precursor mineralization method to recapitulate bone's mineralized nanostructure. SEM images of mineralized samples confirmed the presence of collagen with intrafibrillar mineral, also EDS spectra and FTIR showed high peaks of calcium and phosphate, with a similar mineral/matrix ratio to native bone. Mineralization increased collagen compressive modulus up to 15‐fold. To evaluate vasculature formation and pericyte‐like differentiation, HUVECs and hMSCs were seeded in a 4:1 ratio in the scaffolds for 7 days. Moreover, we used RT‐PCR to investigate the gene expression of pericyte markers ACTA2, desmin, CD13, NG2, and PDGFRβ. Confocal images showed that both nonmineralized and mineralized scaffolds enabled endothelial capillary network formation. However, vessels in the nonmineralized samples had longer vessel length, a larger number of junctions, and a higher presence of αSMA+mural cells. RT‐PCR analysis confirmed the downregulation of pericytic markers in mineralized samples. In conclusion, although both scaffolds enabled endothelial capillary network formation, mineralized scaffolds presented less pericyte‐supported vessels. These observations suggest that specific scaffold characteristics may be required for efficient scaffold vascularization in future bone tissue engineering strategies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1522–1532, 2019.

    more » « less