skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning hydrodynamic equations for active matter from particle simulations and experiments
Recent advances in high-resolution imaging techniques and particle-based simulation methods have enabled the precise microscopic characterization of collective dynamics in various biological and engineered active matter systems. In parallel, data-driven algorithms for learning interpretable continuum models have shown promising potential for the recovery of underlying partial differential equations (PDEs) from continuum simulation data. By contrast, learning macroscopic hydrodynamic equations for active matter directly from experiments or particle simulations remains a major challenge, especially when continuum models are not known a priori or analytic coarse graining fails, as often is the case for nondilute and heterogeneous systems. Here, we present a framework that leverages spectral basis representations and sparse regression algorithms to discover PDE models from microscopic simulation and experimental data, while incorporating the relevant physical symmetries. We illustrate the practical potential through a range of applications, from a chiral active particle model mimicking nonidentical swimming cells to recent microroller experiments and schooling fish. In all these cases, our scheme learns hydrodynamic equations that reproduce the self-organized collective dynamics observed in the simulations and experiments. This inference framework makes it possible to measure a large number of hydrodynamic parameters in parallel and directly from video data.  more » « less
Award ID(s):
2002103 1952706
PAR ID:
10470099
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
7
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to access in experiments. We can also forecast the evolution of these chaotic many-body systems solely from image sequences of their past using a combination of autoencoders and recurrent neural networks with residual architecture. In realistic experimental setups for which the initial conditions are not perfectly known, our physics-inspired machine-learning algorithms can surpass deterministic simulations. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems, even in the absence of knowledge of the underlying dynamics. 
    more » « less
  2. Governing partial differential equations (PDEs) play a critical role in materials research and applications, as they describe essential physics underlying materials behaviour. Traditionally, these equations are developed through phenomenological modelling of experimental results or first principle analysis based on conservation laws. In addition, molecular dynamics (MD) simulations capture atomistic-scale behaviour with detailed physics. However, translating atomistic insights into continuum-scale governing equations remains a significant challenge. Empowered by recent advances in data-driven modelling, we develop a computational framework to learn governing PDEs directly from atomistic simulation data. The framework integrates numerical differentiation of MD data with the identification of constitutive relationships. It proves effective and efficient in learning governing PDEs from noisy and limited MD datasets, without requiring prior knowledge of the final PDEs. Using this framework, we identify a nonlinear PDE governing solid-state diffusion in nickel–hydrogen alloys. This PDE reveals a highly concentration-dependent diffusivity that varies over an order of magnitude. Our data-driven computational framework paves the way for cross-scale constitutive modelling. 
    more » « less
  3. Active matter is differentiated from conventional passive matter due to its unique capability of locally consuming fuels to generate kinetic energy. Such a unique feature of active matter has led to unprecedented phenomena and associated applications. While active matter has been developed for decades, its significance is not recognized by the public. To remedy this gap, we developed an online teaching module introducing collective dynamics of active matter, targeting high school and undergraduate students. The collective dynamics were illustrated via the Vicsek model-based simulation because it reveals the collective dynamics of active matter with one simple rule: nearest-neighbor alignment. With this rule, the simulation demonstrated the collective motion of active matter particles depended on particle number, radius of neighbor aligning, and noise that disturbed alignment. To allow students to hands-on experience the simulation, we developed a graphical user interface, allowing users to perform the Vicsek simulation without a programming background. The simulation and teaching module are available on an online platform: The Partnership for Integration of Computation into Undergraduate Physics, allowing teachers in the US to bring the active matter lecture to their classrooms. 
    more » « less
  4. Active matter and driven systems exhibit statistical fluctuations in density and particle positions that are an indirect indicator of dissipation across length and time scales. Here, we quantitatively relate these fluctuations to a thermodynamic speed limit that constrains the rates of heat and entropy production in nonequilibrium processes. By reparametrizing the speed limit set by the Fisher information, we show how to infer these dissipation rates from directly observable or controllable quantities. This approach can use available experimental data as input and avoid the need for analytically solvable microscopic models or full time-dependent probability distributions. The heat rate we predict agrees with experimental measurements for a pulled Brownian particle and a microtubule active gel, which validates the approach and suggests potential for the design of experiments. 
    more » « less
  5. Abstract Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media. 
    more » « less