skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Combined measures of mimetic fidelity explain imperfect mimicry in a brood parasite–host system
The persistence of imperfect mimicry in nature presents a challenge to mimicry theory. Some hypotheses for the existence of imperfect mimicry make differing predictions depending on how mimetic fidelity is measured. Here, we measure mimetic fidelity in a brood parasite–host system using both trait-based and response-based measures of mimetic fidelity. Cuckoo finchesAnomalospiza imberbislay imperfectly mimetic eggs that lack the fine scribbling characteristic of eggs of the tawny-flanked priniaPrinia subflava, a common host species. A trait-based discriminant analysis based on Minkowski functionals—that use geometric and topological morphometric methods related to egg pattern shape and coverage—reflects this consistent difference between host and parasite eggs. These methods could be applied to quantify other phenotypes including stripes and waved patterns. Furthermore, by painting scribbles onto cuckoo finch eggs and testing their rate of rejection compared to control eggs (i.e. a response-based approach to quantify mimetic fidelity), we show that prinias do not discriminate between eggs based on the absence of scribbles. Overall, our results support relaxed selection on cuckoo finches to mimic scribbles, since prinias do not respond differently to eggs with and without scribbles, despite the existence of this consistent trait difference.  more » « less
Award ID(s):
2002103
PAR ID:
10470100
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Biology Letters
Volume:
19
Issue:
2
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Egg rejection is an effective and widespread antiparasitic defense to eliminate foreign eggs from the nests of hosts of brood parasitic birds. Several lines of observational and critical experimental evidence support a role for learning by hosts in the recognition of parasitic versus own eggs; specifically, individual hosts that have had prior or current experience with brood parasitism are more likely to reject foreign eggs. Here we confirm experimentally the role of prior experience in altering subsequent egg-rejection decisions in the American robin Turdus migratorius, a free-living host species of an obligate brood parasite, the brown-headed cowbird Molothrus ater. We then model the coevolutionary trajectory of both the extent of mimicry of host eggs by parasitic eggs and the host’s egg rejection thresholds in response to an increasing role of learning in egg recognition. Critically, with more learning, we see the evolution of both narrower (more discriminating) rejection thresholds in hosts and greater egg mimicry in parasites. Increasing host clutch size (number of eggs/nest) and increasing parasite load (parasitism rate) also have narrowing effects on the egg-rejection threshold. Together, these results suggest that learning from prior experience with egg rejection may play an important role in the coevolution of egg-mimetic lineages of brood parasites and the refined egg rejection defenses of hosts. 
    more » « less
  2. Abstract Brown‐headed cowbirds (Molothrus ater) are generalist obligate brood parasites, laying in the nest of nearly 300 avian species, and successfully parasitizing well over 100 host species. Cowbird eggs are generally considered non‐mimetic, although some have suggested that cowbird eggs resemble several of their host species’ eggs. To date, no investigation has examined the level of avian‐perceived similarity between cowbird and diverse host eggs in the contexts of light characteristics at the nest and the visual system of the relevant viewer. Because the cowbird exploits a wide range of species that lay in a variety of nest types, hosts view these eggs under an array of light conditions which could facilitate or hinder egg discrimination. When considering the visual system of the relevant viewers and the light conditions at their nest, we found that the coloration of cowbird eggs was more similar to host than non‐host species’ eggs. Host responses (whether they accept or reject cowbird eggs) were not statistically different when hosts perceived a large chromatic difference between their own eggs and the cowbird's eggs. Instead, we found that host responses were predicted by the degree to which nesting light conditions facilitated color similarity between host and cowbird eggs, such that hosts typically nesting under light conditions where this color discrimination task was more challenging were more likely to reject cowbird eggs. This suggests that the nesting light environment may have selected for increased coevolved egg recognition abilities in a suite of cowbird host species, even in the absence of parasitic egg color mimicry. 
    more » « less
  3. Abstract In cleptoparasitic bees, host aggression and detection avoidance might be the main selective pressures shaping host-parasite interactions. However, the behavioral responses toward parasitism are unknown for most host species. In this study, we investigated the host-parasite interactions and behaviors of the cleptoparasitic beeTriepeolus remigatuswhen parasitizing the nests of its host, the squash beeXenoglossa(Peponapis)pruinosa. Using circle-tube behavioral assays and direct observations at a nest aggregation ofX. pruinosa, we assessed whether interactions between host and parasite were aggressive, tolerant, or avoidant and characterized the general parasitic behavior ofT. remigatus. Our results reveal a lack of aggression between host and cuckoo bees, with interactions primarily characterized by tolerant and avoidant behaviors. Squash bees displayed minimal aggression toward both conspecifics and parasites. Interestingly, despite the absence of aggressive responses,T. remigatuspreferred entering nests while the host was foraging, potentially indicating a strategy to avoid the discovery of parasitic visits. Furthermore, field observations provided insights into the parasitic behavior ofT. remigatus, revealing primarily rapid visits to host nests without extensive inspection. The limited aggression and short time for nest visits observed inT. remigatussuggest adaptations to optimize parasitic success while minimizing host detection. Overall, our findings contribute to a better understanding of the behavior of open-cell parasites and provide a first accounting of the squash bee behavior when encountering parasitic bees. Further research is needed to elucidate the mechanisms underlying host-parasite coevolution and response to parasitism in ground-nesting bees. 
    more » « less
  4. Abstract The evolutionary origins of mimicry in the Easter egg weevil, Pachyrhynchus, have fascinated researchers since first noted more than a century ago by Alfred Russel Wallace. Müllerian mimicry, or mimicry in which 2 or more distasteful species look similar, is widespread throughout the animal kingdom. Given the varied but discrete color patterns in Pachyrhynchus, this genus presents one of the best opportunities to study the evolution of both perfect and imperfect mimicry. We analyzed more than 10,000 UCE loci using a novel partitioning strategy to resolve the relationships of closely related species in the genus. Our results indicate that many of the mimetic color patterns observed in sympatric species are due to convergent evolution. We suggest that this convergence is driven by positive frequency-dependent selection. [Biogeography, discrete traits, frequency-dependent selection, mimicry, partitioning, Philippines, polymorphic, UCE.] 
    more » « less
  5. null (Ed.)
    A core hypothesis in coevolutionary theory proposes that parasites adapt to specifically infect common host genotypes. Under this hypothesis, parasites function as agents of negative frequency-dependent selection, favouring rare host genotypes. This parasite-mediated advantage of rarity is key to the idea that parasites maintain genetic variation and select for outcrossing in host populations. Here, we report the results of an experimental test of parasite adaptation to common versus rare host genotypes. We selected the bacterial parasite Serratia marcescens to kill Caenorhabdiis elegans hosts in uneven mixtures of host genotypes. To examine the effect of commonness itself, independent of host identity, each of four host genotypes was represented as common or rare in experimental host mixtures. After experimental selection, we evaluated a parasite line's change in virulence—the selected fitness trait—on its rare and common host genotypes. Our results were consistent with a slight advantage for rare host genotypes: on average, parasites lost virulence against rare genotypes but not against common genotypes. The response varied substantially, however, with distinct patterns across host genotype mixtures. These findings support the potential for parasites to impose negative frequency-dependent selection, while emphasizing that the cost of being common may vary with host genotype. 
    more » « less