skip to main content

Title: Combined measures of mimetic fidelity explain imperfect mimicry in a brood parasite–host system

The persistence of imperfect mimicry in nature presents a challenge to mimicry theory. Some hypotheses for the existence of imperfect mimicry make differing predictions depending on how mimetic fidelity is measured. Here, we measure mimetic fidelity in a brood parasite–host system using both trait-based and response-based measures of mimetic fidelity. Cuckoo finchesAnomalospiza imberbislay imperfectly mimetic eggs that lack the fine scribbling characteristic of eggs of the tawny-flanked priniaPrinia subflava, a common host species. A trait-based discriminant analysis based on Minkowski functionals—that use geometric and topological morphometric methods related to egg pattern shape and coverage—reflects this consistent difference between host and parasite eggs. These methods could be applied to quantify other phenotypes including stripes and waved patterns. Furthermore, by painting scribbles onto cuckoo finch eggs and testing their rate of rejection compared to control eggs (i.e. a response-based approach to quantify mimetic fidelity), we show that prinias do not discriminate between eggs based on the absence of scribbles. Overall, our results support relaxed selection on cuckoo finches to mimic scribbles, since prinias do not respond differently to eggs with and without scribbles, despite the existence of this consistent trait difference.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Biology Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Egg rejection is an effective and widespread antiparasitic defense to eliminate foreign eggs from the nests of hosts of brood parasitic birds. Several lines of observational and critical experimental evidence support a role for learning by hosts in the recognition of parasitic versus own eggs; specifically, individual hosts that have had prior or current experience with brood parasitism are more likely to reject foreign eggs. Here we confirm experimentally the role of prior experience in altering subsequent egg-rejection decisions in the American robin Turdus migratorius, a free-living host species of an obligate brood parasite, the brown-headed cowbird Molothrus ater. We then model the coevolutionary trajectory of both the extent of mimicry of host eggs by parasitic eggs and the host’s egg rejection thresholds in response to an increasing role of learning in egg recognition. Critically, with more learning, we see the evolution of both narrower (more discriminating) rejection thresholds in hosts and greater egg mimicry in parasites. Increasing host clutch size (number of eggs/nest) and increasing parasite load (parasitism rate) also have narrowing effects on the egg-rejection threshold. Together, these results suggest that learning from prior experience with egg rejection may play an important role in the coevolution of egg-mimetic lineages of brood parasites and the refined egg rejection defenses of hosts.

    more » « less
  2. Abstract

    Brown‐headed cowbirds (Molothrus ater) are generalist obligate brood parasites, laying in the nest of nearly 300 avian species, and successfully parasitizing well over 100 host species. Cowbird eggs are generally considered non‐mimetic, although some have suggested that cowbird eggs resemble several of their host species’ eggs. To date, no investigation has examined the level of avian‐perceived similarity between cowbird and diverse host eggs in the contexts of light characteristics at the nest and the visual system of the relevant viewer. Because the cowbird exploits a wide range of species that lay in a variety of nest types, hosts view these eggs under an array of light conditions which could facilitate or hinder egg discrimination. When considering the visual system of the relevant viewers and the light conditions at their nest, we found that the coloration of cowbird eggs was more similar to host than non‐host species’ eggs. Host responses (whether they accept or reject cowbird eggs) were not statistically different when hosts perceived a large chromatic difference between their own eggs and the cowbird's eggs. Instead, we found that host responses were predicted by the degree to which nesting light conditions facilitated color similarity between host and cowbird eggs, such that hosts typically nesting under light conditions where this color discrimination task was more challenging were more likely to reject cowbird eggs. This suggests that the nesting light environment may have selected for increased coevolved egg recognition abilities in a suite of cowbird host species, even in the absence of parasitic egg color mimicry.

    more » « less
  3. Abstract

    The copromicroscopic identification of gastrointestinal parasites is a common, cost-effective method vital to understanding host-parasite interactions. However, its efficacy depends on effective preservation of the samples. In this study, we compare the preservation of ethanol and formalin preserved gastrointestinal parasites collected from a wild population of Costa Rican capuchin monkeys (Cebus imitator). Fecal samples were collected, halved, and stored in either 10% formalin or 96% ethanol at ambient temperature, then microscopically screened for the presence of parasites. Parasites were morphologically identified and rated based on their preservation using a newly developed rubric. We identified more parasitic morphotypes in formalin-preserved samples but found no difference in the number of parasites per fecal gram (PFG) between mediums. There was no difference in the PFG of two most prevalent parasite morphotypes,Filariopsis barretoilarvae and Strongyle-type eggs, and whileFilariopsislarvae were better preserved in formalin, strongyle eggs showed no preservation difference between mediums. Our results support the suitability of both ethanol and formalin for morphological parasite identification in samples stored over 1 year, describe the morphological changes and challenges associated with parasite degradation, and highlight the potential for future studies to use both morphological and molecular methods in non-invasively collected samples.

    more » « less
  4. Abstract Aim

    The biodiversity crisis has highlighted the need to assess and map biodiversity in order to prioritize conservation efforts. Clearwing butterflies (tribe Ithomiini) have been proposed as biological indicators for habitat quality in Neotropical forests, which contain the world's richest biological communities. Here, we provide maps of different facets of Ithomiini diversity across the Neotropics to identify areas of evolutionary and ecological importance for conservation and evaluate their overlap with current anthropogenic threats.




    We ran species distribution models on a data set based on 28,986 georeferenced occurrences representing 388 ithomiine species to generate maps of geographic rarity, taxonomic, phylogenetic and Müllerian mimetic wing pattern diversity. We quantified and mapped the overlap of diversity hotspots with areas threatened by or providing refuge from current anthropogenic pressures.


    The eastern slopes of the Andes formed the primary hotspot of taxonomic, phylogenetic and mimetic diversity, with secondary hotspots in Central America and the Atlantic Forest. Most diversity indices were strongly spatially correlated. Nevertheless, species‐poor communities on the Pacific slopes of the Andes also sheltered some of the geographically rarest species. Overall, tropical montane forests that host high species and mimetic diversity as well as rare species and mimicry rings appeared particularly under threat.

    Main conclusions

    Remote parts of the Upper Amazon may act as refuges against current anthropogenic pressures for a limited portion of Ithomiini diversity. Furthermore, it is likely that the current threat status may worsen with ongoing climate change and deforestation. In this context, the tropical Andes occupy a crucial position as the primary hotspot for multiple facets of biodiversity for ithomiine butterflies, as they do for angiosperms, tetrapods and other insect taxa. Our results support the role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly diversity and reinforce the position of the tropical Andes as a flagship region for biodiversity conservation in general, and insect and butterfly conservation in particular.

    more » « less
  5. Abstract

    Parasites may influence their hosts in multiple ways, ranging from physiological changes and behavioral modifications, to altering life history traits. One fitness component that is often considered in relation to parasitism is host fecundity. The larval acanthocephalan parasite,Profilicollis altmani, commonly infects the Pacific mole crab,Emerita analoga; yet this parasite's effect on the crab's fecundity is unknown. Consequently, we examined the effects of acanthocephalan parasitism on the fecundity of this mole crab species. Crabs were collected from the swash intertidal zone in Monterey Bay, CA, and the following parameters were quantified: crab body size (carapace length) and weight, egg‐bearing status (nongravid and gravid), egg number and diameter, total volume and weight of egg mass, and their developmental stages (from newly laid eggs to recognizable zoea larval stage). Parasite prevalence, intensity of infection, and body size of larval cystacanths (measured as volume) were assessed. Host fecundity was positively correlated with both body size and body weight. No differences in egg weight were found between uninfected and infected crabs. Similarly, no difference in crab body weight at various embryonic developmental phases was documented between uninfected and infected crabs. Cystacanth volumes in infected nongravid and infected gravid crabs were not significantly different. Our study suggests that the parasiteP. altmanidoes not have any appreciable effect on the fecundity ofE. analogaand that female mole crabs undergo normal reproduction and maintain robust population sizes in their natural environments. Our findings thus appear to moderate the pervasive notion of a major impact of parasitism on host reproduction.

    more » « less