skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Confli-T5: An AutoPrompt Pipeline for Conflict Related Text Augmentation
Recent advances in natural language processing (NLP) and Big Data technologies have been crucial for scientists to analyze political unrest and violence, prevent harm, and promote global conflict management. Government agencies and public security organizations have invested heavily in deep learning-based applications to study global conflicts and political violence. However, such applications involving text classification, information extraction, and other NLP-related tasks require extensive human efforts in annotating/labeling texts. While limited labeled data may drastically hurt the models’ performance (over-fitting), large demands on annotation tasks may turn real-world applications impracticable. To address this problem, we propose Confli-T5, a prompt-based method that leverages the domain knowledge from existing political science ontology to generate synthetic but realistic labeled text samples in the conflict and mediation domain. Our model allows generating textual data from the ground up and employs our novel Double Random Sampling mechanism to improve the quality (coherency and consistency) of the generated samples. We conduct experiments over six standard datasets relevant to political science studies to show the superiority of Confli-T5. Our codes are publicly available  more » « less
Award ID(s):
1931541
PAR ID:
10470312
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-8045-1
Page Range / eLocation ID:
1906 to 1913
Format(s):
Medium: X
Location:
Osaka, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Analyzing conflicts and political violence around the world is a persistent challenge in the political science and policy communities due in large part to the vast volumes of specialized text needed to monitor conflict and violence on a global scale. To help advance research in political science, we introduce ConfliBERT, a domain-specific pre-trained language model for conflict and political violence. We first gather a large domain-specific text corpus for language modeling from various sources. We then build ConfliBERT using two approaches: pre-training from scratch and continual pre-training. To evaluate ConfliBERT, we collect 12 datasets and implement 18 tasks to assess the models’ practical application in conflict research. Finally, we evaluate several versions of ConfliBERT in multiple experiments. Results consistently show that ConfliBERT outperforms BERT when analyzing political violence and conflict. 
    more » « less
  2. Mitkov, Ruslan; Angelova, Galia (Ed.)
    This study investigates the use of Natural Language Processing (NLP) methods to analyze politics, conflicts and violence in the Middle East using domain-specific pre-trained language models. We introduce Arabic text and present ConfliBERT-Arabic, a pre-trained language models that can efficiently analyze political, conflict and violence-related texts. Our technique hones a pre-trained model using a corpus of Arabic texts about regional politics and conflicts. Performance of our models is compared to baseline BERT models. Our findings show that the performance of NLP models for Middle Eastern politics and conflict analysis are enhanced by the use of domain-specific pre-trained local language models. This study offers political and conflict analysts, including policymakers, scholars, and practitioners new approaches and tools for deciphering the intricate dynamics of local politics and conflicts directly in Arabic. 
    more » « less
  3. This article introduces ConfliBERT-Spanish, a pre-trained language model specialized in political conflict and violence for text written in the Spanish language. Our methodology relies on a large corpus specialized in politics and violence to extend the capacity of pre-trained models capable of processing text in Spanish. We assess the performance of ConfliBERT-Spanish in comparison to Multilingual BERT and BETO baselines for binary classification, multi-label classification, and named entity recognition. Results show that ConfliBERT-Spanish consistently outperforms baseline models across all tasks. These results show that our domain-specific language-specific cyberinfrastructure can greatly enhance the performance of NLP models for Latin American conflict analysis. This methodological advancement opens vast opportunities to help researchers and practitioners in the security sector to effectively analyze large amounts of information with high degrees of accuracy, thus better equipping them to meet the dynamic and complex security challenges affecting the region. 
    more » « less
  4. null (Ed.)
    Understanding who blames or supports whom in news text is a critical research question in computational social science. Traditional methods and datasets for sentiment analysis are, however, not suitable for the domain of political text as they do not consider the direction of sentiments expressed between entities. In this paper, we propose a novel NLP task of identifying directed sentiment relationship between political entities from a given news document, which we call directed sentiment extraction. From a million-scale news corpus, we construct a dataset of news sentences where sentiment relations of political entities are manually annotated. We present a simple but effective approach for utilizing a pretrained transformer, which infers the target class by predicting multiple question-answering tasks and combining the outcomes. We demonstrate the utility of our proposed method for social science research questions by analyzing positive and negative opinions between political entities in two major events: 2016 U.S. presidential election and COVID-19. The newly proposed problem, data, and method will facilitate future studies on interdisciplinary NLP methods and applications. 
    more » « less
  5. We present ConflLlama, demonstrating how efficient fine-tuning of large language models can advance automated classification tasks in political science research. While classification of political events has traditionally relied on manual coding or rigid rule-based systems, modern language models offer the potential for more nuanced, context-aware analysis. However, deploying these models requires overcoming significant technical and resource barriers. We demonstrate how to adapt open-source language models to specialized political science tasks, using conflict event classification as our proof of concept. Through quantization and efficient fine-tuning techniques, we show state-of-the-art performance while minimizing computational requirements. Our approach achieves a macro-averaged AUC of 0.791 and a weighted F1-score of 0.753, representing a 37.6% improvement over the base model, with accuracy gains of up to 1463% in challenging classifications. We offer a roadmap for political scientists to adapt these methods to their own research domains, democratizing access to advanced NLP capabilities across the discipline. This work bridges the gap between cutting-edge AI developments and practical political science research needs, enabling broader adoption of these powerful analytical tools. 
    more » « less