skip to main content


Title: Confli-T5: An AutoPrompt Pipeline for Conflict Related Text Augmentation
Recent advances in natural language processing (NLP) and Big Data technologies have been crucial for scientists to analyze political unrest and violence, prevent harm, and promote global conflict management. Government agencies and public security organizations have invested heavily in deep learning-based applications to study global conflicts and political violence. However, such applications involving text classification, information extraction, and other NLP-related tasks require extensive human efforts in annotating/labeling texts. While limited labeled data may drastically hurt the models’ performance (over-fitting), large demands on annotation tasks may turn real-world applications impracticable. To address this problem, we propose Confli-T5, a prompt-based method that leverages the domain knowledge from existing political science ontology to generate synthetic but realistic labeled text samples in the conflict and mediation domain. Our model allows generating textual data from the ground up and employs our novel Double Random Sampling mechanism to improve the quality (coherency and consistency) of the generated samples. We conduct experiments over six standard datasets relevant to political science studies to show the superiority of Confli-T5. Our codes are publicly available  more » « less
Award ID(s):
1931541
NSF-PAR ID:
10470312
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1906 to 1913
Format(s):
Medium: X
Location:
Osaka, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Analyzing conflicts and political violence around the world is a persistent challenge in the political science and policy communities due in large part to the vast volumes of specialized text needed to monitor conflict and violence on a global scale. To help advance research in political science, we introduce ConfliBERT, a domain-specific pre-trained language model for conflict and political violence. We first gather a large domain-specific text corpus for language modeling from various sources. We then build ConfliBERT using two approaches: pre-training from scratch and continual pre-training. To evaluate ConfliBERT, we collect 12 datasets and implement 18 tasks to assess the models’ practical application in conflict research. Finally, we evaluate several versions of ConfliBERT in multiple experiments. Results consistently show that ConfliBERT outperforms BERT when analyzing political violence and conflict. 
    more » « less
  2. null (Ed.)
    Understanding who blames or supports whom in news text is a critical research question in computational social science. Traditional methods and datasets for sentiment analysis are, however, not suitable for the domain of political text as they do not consider the direction of sentiments expressed between entities. In this paper, we propose a novel NLP task of identifying directed sentiment relationship between political entities from a given news document, which we call directed sentiment extraction. From a million-scale news corpus, we construct a dataset of news sentences where sentiment relations of political entities are manually annotated. We present a simple but effective approach for utilizing a pretrained transformer, which infers the target class by predicting multiple question-answering tasks and combining the outcomes. We demonstrate the utility of our proposed method for social science research questions by analyzing positive and negative opinions between political entities in two major events: 2016 U.S. presidential election and COVID-19. The newly proposed problem, data, and method will facilitate future studies on interdisciplinary NLP methods and applications. 
    more » « less
  3. Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple text classification and sequence tagging. 
    more » « less
  4. Abstract Background

    Natural language processing (NLP) tasks in the health domain often deal with limited amount of labeled data due to high annotation costs and naturally rare observations. To compensate for the lack of training data, health NLP researchers often have to leverage knowledge and resources external to a task at hand. Recently, pretrained large-scale language models such as the Bidirectional Encoder Representations from Transformers (BERT) have been proven to be a powerful way of learning rich linguistic knowledge from massive unlabeled text and transferring that knowledge to downstream tasks. However, previous downstream tasks often used training data at such a large scale that is unlikely to obtain in the health domain. In this work, we aim to study whether BERT can still benefit downstream tasks when training data are relatively small in the context of health NLP.

    Method

    We conducted a learning curve analysis to study the behavior of BERT and baseline models as training data size increases. We observed the classification performance of these models on two disease diagnosis data sets, where some diseases are naturally rare and have very limited observations (fewer than 2 out of 10,000). The baselines included commonly used text classification models such as sparse and dense bag-of-words models, long short-term memory networks, and their variants that leveraged external knowledge. To obtain learning curves, we incremented the amount of training examples per disease from small to large, and measured the classification performance in macro-averaged$$F_{1}$$F1score.

    Results

    On the task of classifying all diseases, the learning curves of BERT were consistently above all baselines, significantly outperforming them across the spectrum of training data sizes. But under extreme situations where only one or two training documents per disease were available, BERT was outperformed by linear classifiers with carefully engineered bag-of-words features.

    Conclusion

    As long as the amount of training documents is not extremely few, fine-tuning a pretrained BERT model is a highly effective approach to health NLP tasks like disease classification. However, in extreme cases where each class has only one or two training documents and no more will be available, simple linear models using bag-of-words features shall be considered.

     
    more » « less
  5. Transfer learning has fundamentally changed the landscape of natural language processing (NLP). Many state-of-the-art models are first pre-trained on a large text corpus and then fine-tuned on downstream tasks. However, due to limited data resources from downstream tasks and the extremely high complexity of pre-trained models, aggressive fine-tuning of- ten causes the fine-tuned model to overfit the training data of downstream tasks and fail to generalize to unseen data. To address such an issue in a principled manner, we propose a new learning framework for robust and efficient fine-tuning for pre-trained models to attain better generalization performance. The pro- posed framework contains two important in- gredients: 1. Smoothness-inducing regulariza- tion, which effectively manages the complex- ity of the model; 2. Bregman proximal point optimization, which is an instance of trust- region methods and can prevent aggressive up- dating. Our experiments show that the pro- posed framework achieves new state-of-the-art performance on a number of NLP tasks includ- ing GLUE, SNLI, SciTail and ANLI. More- over, it also outperforms the state-of-the-art T5 model, which is the largest pre-trained model containing 11 billion parameters, on GLUE. 
    more » « less