skip to main content


Title: Structure, Function, and Application of Self‐Healing Adhesives from Mistletoe Viscin
Abstract

Berries from the European Mistletoe (Viscum album) possess a sticky tissue called viscin that facilitates adhesion and germination onto host trees. Recent studies of viscin have demonstrated its adhesive capacity on a range of natural and synthetic surfaces including wood, skin, metals, and plastic. Yet, the underlying mechanisms remain poorly understood. Here, an investigation of the adhesive performance of mistletoe viscin is performed, demonstrating its hygroscopic nature and ability to self‐heal following adhesive failure. It is identified that adhesion originates from a water‐soluble adhesive component that can be extracted, isolated, and characterized independently. Lap shear mechanical testing indicates that the mistletoe adhesive extract (MAE) outperforms native viscin tissue, as well as gum arabic and arabinogalactan—common plant‐based adhesives. Furthermore, humidity uptake experiments reveal that MAE can reversibly absorb nearly 100% of its mass in water from the atmosphere. In‐depth spectroscopic and mass spectrometry investigations reveal a composition consisting primarily of an atypical arabinogalactan, with additional sugar alcohols. Finally, several proof‐of‐concept applications are demonstrated using MAE for hygro‐responsive reversible adhesion between various surfaces including skin, plastic, PDMS, and paper, revealing that MAE holds potential as a biorenewable and reusable adhesive for applications in cosmetics, packaging, and potentially, tissue engineering.

 
more » « less
NSF-PAR ID:
10470368
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long‐lasting interface. BioAdheSil, a silicone‐based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue‐infiltration‐based long‐term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long‐lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long‐term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines.

     
    more » « less
  2. In vivophotoacoustic (PA) flow cytometry (PAFC) has great clinical potential for early, noninvasive diagnosis of cancer, infections (e.g., malaria and bacteremia), sickle anemia, and cardiovascular disorders, including stroke prevention through detection of circulating white clots with negative PA contrast. For clinical applications, this diagnostic platform still requires optimization and calibration. We have already demonstrated that this need can be partially addressed byin vivoexamination of large mouse blood vessels, which are similar to human vessels used. Here, we present an alternative method for PAFC optimization that utilizes novel, clinically relevant phantoms resembling pigmented skin, tissue, vessels, and flowing blood. This phantom consists of a scattering-absorbing medium with a melanin layer and plastic tube with flowing beads to model light-absorbing red blood cells (RBCs) and circulating tumor cells (CTCs), as well as transparent beads to model white blood cells and clots. Using a laser diode, we demonstrated the extraordinary ability of PAFC to dynamically detect fast-moving mimic CTCs with positive PA contrast and white clots with negative PA contrast in an RBC background. Time-resolved detection of the delayed PA signals from blood vessels demonstrated complete suppression of the PA background from the modeled pigmented skin. This novel, medically relevant, dynamic blood flow phantom can be used to calibrate and maintain PAFC parameters for routine clinical applications.

     
    more » « less
  3. Atack, John M. (Ed.)
    ABSTRACT

    Mucins are glycoproteins which can be found in host cell membranes and as a gelatinous surface formed from secreted mucins. Mucosal surfaces in mammals form a barrier to invasive microbes, particularly bacteria, but are a point of attachment for others.Clostridioides difficileis an anaerobic bacterium, which colonizes the mammalian gastrointestinal (GI) tract and is a common cause of acute GI inflammation leading to a variety of negative outcomes. AlthoughC. difficiletoxicity stems from secreted toxins, colonization is a prerequisite forC. difficiledisease. WhileC. difficileis known to associate with the mucous layer and underlying epithelium, the mechanisms underlying these interactions that facilitate colonization are less well understood. To understand the molecular mechanisms by whichC. difficileinteracts with mucins, we usedex vivomucosal surfaces to test the ability ofC. difficileto bind to mucins from different mammalian tissues. We found significant differences inC. difficileadhesion based upon the source of mucins, with highest levels of binding observed to mucins purified from the human colonic adenocarcinoma line LS174T and lowest levels of binding to porcine gastric mucin. We also observed defects in adhesion by mutants deficient in flagella but not type IV pili. These results imply that interactions between host mucins andC. difficileflagella facilitate the initial host attachment ofC. difficileto host cells and secreted mucus.

    IMPORTANCE

    Clostridioides difficileis one of the leading causes of hospital-acquired infections worldwide and presents challenges in treatment due to recurrent gastrointestinal disease after treatment with antimicrobials. The mechanisms by whichC. difficilecolonizes the gut represent a key gap in knowledge, including its association with host cells and mucosa. Our results show the importance of flagellin for specific adhesion to mucosal hydrogels and can help to explain prior observations of adhesive defects in flagellin and pilin mutants.

     
    more » « less
  4. Strong adherence to underwater or wet surfaces for applications like tissue adhesion and underwater robotics is a significant challenge. This is especially apparent when switchable adhesion is required that demands rapid attachment, high adhesive capacity, and easy release. Nature displays a spectrum of permanent to reversible attachment from organisms ranging from the mussel to the octopus, providing inspiration for underwater adhesion design that has yet to be fully leveraged in synthetic systems. Here, we review the challenges and opportunities for creating underwater adhesives with a pathway to switchability. We discuss key material, geometric, modeling, and design tools necessary to achieve underwater adhesion similar to the adhesion control demonstrated in nature. Through these interdisciplinary efforts, we envision that bioinspired adhesives can rise to or even surpass the extraordinary capabilities found in biological systems. 
    more » « less
  5. Abstract

    Incorporating catechols into polymers can provide strong adhesion even in moist environments, and these polymers show promise for use in several biomedical applications. Surgical adhesives must have strong bonds, be biocompatible, and function in a moist environment. Poly(lactic acid) (PLA) has a long history as a biocompatible material for hard tissue device fixation. By combining these concepts, catechol‐containing poly(lactic acid) (cPLA) polymers are created that are strongly adhesive and degrade in physiological environments. Here, we evaluated the cytocompatibility of cPLA with iron(III) or periodate (IO4) cross‐linkers. Fibroblasts cultured in cPLA leachate or on cPLA films generally had slower growth and lower metabolism compared with PLA controls but no differences in viability. These results demonstrated that cPLA was not cytotoxic but that including catechols reduced cell health. When cPLA was cross‐linked with periodate, cells generally had reduced metabolism, slower cell growth, and poor actin fiber formation compared with PLA. These results are attributed to the cytotoxicity of periodate since cells cultured with periodate leachate had extremely low viability. Cells grown on the films of iron‐cross‐linked cPLA generally had high viability and metabolism but slower proliferation than PLA controls. These results indicate that the cPLA and iron‐cross‐linked cPLA systems are promising materials for biomedical adhesive applications.

     
    more » « less