Abstract Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long‐lasting interface. BioAdheSil, a silicone‐based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue‐infiltration‐based long‐term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long‐lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long‐term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines.
more »
« less
Structure, Function, and Application of Self‐Healing Adhesives from Mistletoe Viscin
Abstract Berries from the European Mistletoe (Viscum album) possess a sticky tissue called viscin that facilitates adhesion and germination onto host trees. Recent studies of viscin have demonstrated its adhesive capacity on a range of natural and synthetic surfaces including wood, skin, metals, and plastic. Yet, the underlying mechanisms remain poorly understood. Here, an investigation of the adhesive performance of mistletoe viscin is performed, demonstrating its hygroscopic nature and ability to self‐heal following adhesive failure. It is identified that adhesion originates from a water‐soluble adhesive component that can be extracted, isolated, and characterized independently. Lap shear mechanical testing indicates that the mistletoe adhesive extract (MAE) outperforms native viscin tissue, as well as gum arabic and arabinogalactan—common plant‐based adhesives. Furthermore, humidity uptake experiments reveal that MAE can reversibly absorb nearly 100% of its mass in water from the atmosphere. In‐depth spectroscopic and mass spectrometry investigations reveal a composition consisting primarily of an atypical arabinogalactan, with additional sugar alcohols. Finally, several proof‐of‐concept applications are demonstrated using MAE for hygro‐responsive reversible adhesion between various surfaces including skin, plastic, PDMS, and paper, revealing that MAE holds potential as a biorenewable and reusable adhesive for applications in cosmetics, packaging, and potentially, tissue engineering.
more »
« less
- Award ID(s):
- 1933525
- PAR ID:
- 10470368
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A shape memory polymer (SMP) has been intensively researched in terms of its exceptional reversible dry adhesive characteristics and related smart adhesive applications over the last decade. However, its unique adhesive properties have rarely been taken into account for other potential applications, such as robotic pick-and-place, which might otherwise improve robotic manipulation and contribute to the related fields. This work explores the use of an SMP to design an adhesive gripper that picks and places a target solid object employing the reversible dry adhesion of an SMP. The numerical and experimental results reveal that an ideal compositional and topological SMP adhesive design can significantly improve its adhesion strength and reversibility, leading to a strong grip force and a minimal release force. Next, a radially averaged power spectrum density (RAPSD) analysis proves that active heating and cooling with a thermoelectric Peltier module (TEC) substantially enhances the conformal adhesive contact of an SMP. Based on these findings, an adhesive gripper is designed, fabricated, and tested. Remarkably, the SMP adhesive gripper interacts not only with flat and smooth dry surfaces, but also moderately rough and even wet surfaces for pick-and-place, showing high adhesion strength (>2 standard atmospheres) which is comparable to or exceeds those of other single-surface contact grippers, such as vacuum, electromagnetic, electroadhesion, and gecko grippers. Lastly, the versatility and utility of the SMP adhesive gripper are highlighted through diverse pick-and-place demonstrations. Associated studies on physical mechanisms, SMP adhesive mechanics, and thermal conditions are also presented.more » « less
-
Strong adherence to underwater or wet surfaces for applications like tissue adhesion and underwater robotics is a significant challenge. This is especially apparent when switchable adhesion is required that demands rapid attachment, high adhesive capacity, and easy release. Nature displays a spectrum of permanent to reversible attachment from organisms ranging from the mussel to the octopus, providing inspiration for underwater adhesion design that has yet to be fully leveraged in synthetic systems. Here, we review the challenges and opportunities for creating underwater adhesives with a pathway to switchability. We discuss key material, geometric, modeling, and design tools necessary to achieve underwater adhesion similar to the adhesion control demonstrated in nature. Through these interdisciplinary efforts, we envision that bioinspired adhesives can rise to or even surpass the extraordinary capabilities found in biological systems.more » « less
-
Abstract Conductive adhesives are required for the integration of dissimilar material components to create soft electronic and robotic systems. Here, a heterogeneous liquid metal‐based conductive adhesive is developed that reversibly attaches to diverse surfaces with high stretchability (>100% strain), low modulus (<100 kPa), and strain‐invariant electrical conductivity. This SofT integrated composite with tacK through liquid metal (STICK‐LM) adhesive consists of a heterogeneous graded film with a liquid metal‐rich side that is embossed at prescribed locations for electrical conductivity and an electrically insulating adhesive side for integration. Adhesion behavior is tuned for adhesion energies > 70 Jm−2(≈ 25x enhancement over unmodified composites) and described with a viscoelastic analysis, providing design guidelines for controllable yet reversible adhesion in electrically conductive systems. The architecture of STICK‐LM adhesives provides anisotropic and heterogeneous electrical conductivity and enables direct integration into soft functional systems. This is demonstrated with deformable fuses for robotic joints, repositionable electronics that rapidly attach on curvilinear surfaces, and stretchable adhesive conductors with nearly constant electrical resistance. This study provides a methodology for electrically conductive, reversible adhesives for electrical and mechanical integration of multicomponent systems in emerging technologies.more » « less
-
Abstract Adhesive tissue engineering scaffolds (ATESs) have emerged as an innovative alternative means, replacing sutures and bioglues, to secure the implants onto target tissues. Relying on their intrinsic tissue adhesion characteristics, ATES systems enable minimally invasive delivery of various scaffolds. This study investigates development of the first class of 3D bioprinted ATES constructs using functionalized hydrogel bioinks. Two ATES delivery strategies, in situ printing onto the adherend versus printing and then transferring to the target surface, are tested using two bioprinting methods, embedded versus air printing. Dopamine‐modified methacrylated hyaluronic acid (HAMA‐Dopa) and gelatin methacrylate (GelMA) are used as the main bioink components, enabling fabrication of scaffolds with enhanced adhesion and crosslinking properties. Results demonstrate that dopamine modification improved adhesive properties of the HAMA‐Dopa/GelMA constructs under various loading conditions, while maintaining their structural fidelity, stability, mechanical properties, and biocompatibility. While directly printing onto the adherend yields superior adhesive strength, embedded printing followed by transfer to the target tissue demonstrates greater potential for translational applications. Together, these results demonstrate the potential of bioprinted ATESs as off‐the‐shelf medical devices for diverse biomedical applications.more » « less