The over-enrichment of phosphorus in waste streams can lead to eutrophication and oxygen limitations for aquatic life. To understand the release of phosphorus from a soybean processing facility, it is imperative to track the flow of phosphorus in different streams during the processing of soybeans. The objective of the study is to develop process simulation models to study the flow of phosphorus in the soy-biodiesel process and evaluate strategies to mitigate phosphorus release by recovering phosphorous from soapstock and wastewater. Since most of the P is found in soybean meal, the processing of which releases phosphorus, a third case of lecithin recovery was also studied to reduce the amount of phosphorous in soybean meal. It was observed that phosphorus can be economically recovered from the soapstock, as well as the wastewater stream, with an estimated operating cost of USD 1.65 and 3.62 per kg of phosphorous recovered, respectively. The phosphorus recovered from both streams can be potentially applied as fertilizer to more than 13,000 acres of corn or 96,000 acres of soybean, respectively. The lecithin recovery case was found to have the highest revenue, and it led to a 54% reduction in phosphorous during soybean meal processing.
more »
« less
Phosphorus flow in production of soy protein concentrate and isolate from defatted soybean flour
Abstract Implications of excess phosphorus (P) in waste streams obtained from soy‐based protein preparation processes on the environment and their potential utilization as P‐source are two significant understudied areas. Soybean‐based protein ingredients for food products retain comparatively enhanced functional properties and are cheaper than other plant‐based proteins. Soybean protein can be extracted and utilized as a food ingredient primarily by preparing soy protein concentrates (SPC) and soy protein isolates (SPI) from soybean meal/defatted soy flour (DSF). In a typical soybean processing facility, along with the soy products and soy‐protein preparations, the recovery of phosphorus as a coproduct will enhance the economic feasibility of the overall process as the recovered P can be used as fertilizer. In this study, the SPC and SPI were prepared from the DSF following widely used conventional protocols and P flow in these processes was tracked. In SPC production, ~59% of the total P was retained with SPC and ~34% was in the aqueous waste streams. For SPI process ~24% of total P was retained with SPI and ~59% went in the waste solid residue (~40%) and aqueous streams (~19%). About 80%–89% P removal from the waste aqueous streams was achieved by Ca‐phytate precipitation. This work demonstrated that in the process of SPC and SPI preparation the phosphorus from the waste aqueous streams can be precipitated out to avoid subsequent eutrophication and the waste solid residue with ~40% P can be reused as a P‐fertilizer as other applications of this residue are unspecified.
more »
« less
- Award ID(s):
- 1739788
- PAR ID:
- 10470392
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of the American Oil Chemists' Society
- Volume:
- 100
- Issue:
- 12
- ISSN:
- 0003-021X
- Format(s):
- Medium: X Size: p. 985-991
- Size(s):
- p. 985-991
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Waste from the human food system includes a large quantity of nutrients that pose environmental and human health risks. If these nutrients can be captured and repurposed, they could potentially offset synthetic fertilizer demands. This study reviews several technologies—including anaerobic digestion, hydrothermal carbonization (HTC), and composting—that can be used to process wastes from the human food system. This study also assesses the quantity of nutrient resources that are available from wastes, including food waste, biosolids, manure, and yard waste. Three geographic scales were analyzed. At a national level in the United States, up to 27% of nitrogen and 33% of phosphorus demands for agriculture could be met with wastes from the human food system, primarily from food waste and biosolids. Some rural localities have a greater potential for circular economies of nutrients in the food system, with the potential to meet 100% of nitrogen and phosphorus fertilizer demands using waste nutrients, as in the case of Athens County, Ohio. Benefits of offsetting synthetic fertilizer use with waste nutrients include reduced greenhouse gas (GHG) emissions, with up to 64% reduction in GHG emissions per unit of nitrogen fertilizer produced with HTC.more » « less
-
Abstract The economic viability of corn biorefineries depends heavily on the sale of coproducts as animal feeds, but elevated phosphorus (P) contents can exacerbate manure management issues. Phosphorus removal from light steep water and thin stillage, two concentrated in‐process aqueous streams at wet milling and dry‐grind corn biorefineries, could simultaneously generate concentrated fertilizer and low‐P animal feeds, but little is known regarding how differences in stream composition affect removal. To address this data gap, we show that the solubility of P in light steep filtrate (LSF) and thin stillage filtrate (TSF) exhibits distinct sensitivity to calcium (Ca) and base addition due to differences in P fractionation and protein abundance. In LSF, P was primarily organic, and near‐complete removal of P (96%) was observed at pH 8 and a Ca/total P (TP) ratio of 2. In TSF, TP removal was lower (81%), and there was more equal distribution of organic and orthophosphate, indicating that the Ca requirements of inorganic P precipitation were a limiting factor. The C/H/N ratio, elemental characterization, and crude protein analysis of the precipitated solids indicated that coprecipitation of amorphous solids containing Ca, Mg, and K with soluble proteins facilitated removal of P, particularly in LSF. Although the removal mechanisms and solubility limits differed, these results highlighted the magnitude (40–70 mM) and efficacy (80–96%) of P recovery from two biorefinery streams.more » « less
-
Abstract Struvite (MgNH4PO4·6H2O) has been precipitated from liquid waste streams to recover valuable nutrients, such as phosphorus (P) and nitrogen (N), that can be used as an alternative fertilizer‐P source. Because prior research has focused on greenhouse studies, it is necessary to expand struvite evaluations to the field‐scale to include row‐crop responses. The objective of this field study was to evaluate the effects of two struvite materials (electrochemically precipitated struvite, ECST; and chemically precipitated struvite, CPST) relative to other common fertilizer‐P sources (diammonium phosphate, DAP; triple superphosphate, TSP; rock phosphate, RP; and monoammonium phosphate, MAP) on soybean [Glycine max(L.) Merr.] response and economics in two consecutive growing seasons in a P‐deficient, silt‐loam soil (Aquic Fraglossudalfs) in eastern Arkansas. Averaged across years, soybean aboveground tissue P uptake was largest (P < .05) from ECST (28.4 kg ha−1), which was similar to CPST (26.7 kg ha−1) and TSP (25.9 kg ha−1) and was smallest from RP (21.4 kg ha−1). In 2019, seed yield was largest (P < .05) from ECST (4.1 Mg ha−1), which was similar to DAP, CPST, RP, TSP, and MAP, and was smallest from the unamended control (3.6 Mg ha−1). In 2020, seed yield was numerically greatest from CPST (2.8 Mg ha−1) and was numerically smallest from ECST (2.2 Mg ha−1). Results showed that wastewater‐recovered struvite materials have the potential to be a viable, alternative fertilizer‐P source for soybean production in a P‐deficient, silt‐loam soil, but further work is needed to confirm struvite's cost effectiveness.more » « less
-
In a circular nutrient economy, nitrogen and phosphorous are removed from waste streams and captured as valuable fertilizer products, to more sustainably reuse the resources in closed-loops and simultaneously protect receiving aquatic environments from harmful N and P emissions. For nutrient reclamation to be competitive with the existing practices of N fixation and P mining, the methods of recovery must achieve at least comparable energy consumption. This study employed the Gibbs free energy of separation to quantify the minimum energy required to recover various N and P fertilizer products from waste streams of fresh and hydrolyzed urine, greywater, domestic wastewater, and secondary treated wastewater effluent. The comparative advantages in theoretical energy intensities for N and P recovery from nutrient-dense waste streams, such as fresh and hydrolyzed urine, were assessed against the other more dilute sources. For example, compared to reclaiming the nutrients from treated wastewater effluent at centralized wastewater treatment plants, the minimum energy required to recover 1.0 M NH 3(aq) from source-separated hydrolyzed urine can be ≈40–68% lower, whereas recovering KH 2 PO 4(s) from diverted fresh urine can, in principle, be ≈13–34% less energy intensive. The study also evaluated the efficiencies required by separation techniques for the energy demand of N and P recovery to be lower than the current production approaches of the Haber–Bosch process and phosphate rock mining. For instance, the most energetically favorable ammoniacal nitrogen and orthophosphate reclamation schemes, which target hydrolyzed and fresh urine, respectively, require energy efficiencies >7% and >39%. This study highlights that strategic selection of waste stream and fertilizer product can enable the most expedient recovery of nutrients and realize a circular economy model for N and P management.more » « less
An official website of the United States government
