skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do These Students Have Similar Strategies? Clustering Math Work in Uploaded Images on an Online Learning Platform.
This exploratory study delves into the complex challenge of analyzing and interpreting student responses to mathematical problems, typically conveyed through image formats within online learning platforms. The main goal of this research is to identify and differentiate various student strategies within a dataset comprising image-based mathematical work. A comprehensive approach is implemented, including various image representation, preprocessing, and clustering techniques, each evaluated to fulfill the study’s objectives. The exploration spans several methods for enhanced image representation, extending from conventional pixel-based approaches to the innovative deployment of CLIP embeddings. Given the prevalent noise and variability in our dataset, an ablation study is conducted to meticulously evaluate the impact of various preprocessing steps, assessing their potency in eradicating extraneous backgrounds and noise to more precisely isolate relevant mathematical content. Two clustering approaches—k-means and hierarchical clustering—are employed to categorize images based on student strategies that underlies their responses. Preliminary results underscore the hierarchical clustering method could distinguish between student strategies effectively. Our study lays down a robust framework for characterizing and understanding student strategies in online mathematics problem-solving, paving the way for future research into scalable and precise analytical methodologies while introducing a novel open-source image dataset for the learning analytics research community.  more » « less
Award ID(s):
1903304
PAR ID:
10470438
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
LAK 2024 (accepted)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Non-negative matrix factorization and its extensions were applied to various areas (i.e., dimensionality reduction, clustering, etc.). When the original data are corrupted by outliers and noise, most of non-negative matrix factorization methods cannot achieve robust factorization and learn a subspace with binary codes. This paper puts forward a robust semi-supervised non-negative matrix factorization method for binary subspace learning, called RSNMF, for image clustering. For better clustering performance on the dataset contaminated by outliers and noise, we propose a weighted constraint on the noise matrix and impose manifold learning into non-negative matrix factorization. Moreover, we utilize the discrete hashing learning method to constrain the learned subspace, which can achieve a binary subspace from the original data. Experimental results validate the robustness and effectiveness of RSNMF in binary subspace learning and image clustering on the face dataset corrupted by Salt and Pepper noise and Contiguous Occlusion. 
    more » « less
  2. Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student open- ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual an- swers. Several computer-based learning systems allow stu- dents to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an ex- isting method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less
  3. Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student open- ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual an- swers. Several computer-based learning systems allow stu- dents to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an ex- isting method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less
  4. Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student openended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual answers. Several computer-based learning systems allow students to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an existing method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less
  5. Teachers often rely on the use of a range of open-ended problems to assess students' understanding of mathematical concepts. Beyond traditional conceptions of student open-ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual answers. Several computer-based learning systems allow students to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an existing method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less