skip to main content


Title: Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy

The combination of polarization-sensitive optical coherence tomography (PS-OCT) and birefringence microscopy (BRM) enables multiscale assessment of myelinated axons in postmortem brain tissue, and these tools are promising for the study of brain connectivity and organization. We demonstrate label-free imaging of myelin structure across the mesoscopic and microscopic spatial scales by performing serial-sectioning PS-OCT of a block of human brain tissue and periodically sampling thin sections for high-resolution imaging with BRM. In co-registered birefringence parameter maps, we observe good correspondence and demonstrate that BRM enables detailed validation of myelin (hence, axonal) organization, thus complementing the volumetric information content of PS-OCT.

 
more » « less
NSF-PAR ID:
10470539
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
14
Issue:
11
ISSN:
2156-7085
Format(s):
Medium: X Size: Article No. 5946
Size(s):
["Article No. 5946"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Kidney cancer is a kind of high mortality cancer because of the difficulty in early diagnosis and the high metastatic dissemination in treatments. The surgical resection of tumors is the most effective treatment for renal cancer patients. However, precise assessment of tumor margins is a challenge during surgical resection. The objective of this study is to demonstrate an optical imaging tool in precisely distinguishing kidney tumor borders and identifying tumor zones from normal tissues to assist surgeons in accurately resecting tumors from kidneys during the surgery. 30 samples from six human kidneys were imaged using polarization-sensitive optical coherence tomography (PS-OCT). Cross-sectional, enface, and spatial information of kidney samples were obtained for microenvironment reconstruction. Polarization parameters (phase retardation, optic axis direction, and degree of polarization uniformity (DOPU) and Stokes parameters (Q, U, and V) were utilized for multiparameter analysis. To verify the detection accuracy of PS-OCT, H&E histology staining and dice-coefficient were utilized to quantify the performance of PS-OCT in identifying tumor borders and regions. In this study, tumor borders were clearly identified by PS-OCT imaging, which outperformed the conventional intensity-based OCT. With H&E histological staining as golden standard, PS-OCT precisely identified the tumor regions and tissue distributions at different locations and different depths based on polarization and Stokes parameters. Compared to the traditional attenuation coefficient quantification method, PS-OCT demonstrated enhanced contrast of tissue characteristics between normal and cancerous tissues due to the birefringence effects. Our results demonstrated that PS-OCT was promising to provide imaging guidance for the surgical resection of kidney tumors and had the potential to be used for other human kidney surgeries in clinics such as renal biopsy. 
    more » « less
  2. Abstract

    Epidural anesthesia helps manage pain during different surgeries. Nonetheless, the precise placement of the epidural needle remains a challenge. In this study, we developed a probe based on polarization‐sensitive optical coherence tomography (PS‐OCT) to enhance the epidural anesthesia needle placement. The probe was tested on six porcine spinal samples. The multimodal imaging guidance used the OCT intensity mode and three distinct PS‐OCT modes: (1) phase retardation, (2) optic axis, and (3) degree of polarization uniformity (DOPU). Each mode enabled the classification of different epidural tissues through distinct imaging characteristics. To further streamline the tissue recognition procedure, convolutional neural network (CNN) were used to autonomously identify the tissue types within the probe's field of view. ResNet50 models were developed for all four imaging modes. DOPU imaging was found to provide the highest cross‐testing accuracy of 91.53%. These results showed the improved precision by PS‐OCT in guiding epidural anesthesia needle placement.

     
    more » « less
  3. Optical coherence tomography (OCT) leverages light scattering by biological tissues as endogenous contrast to form structural images. Light scattering behavior is dictated by the optical properties of the tissue, which depend on microstructural details at the cellular or sub-cellular level. Methods to measure these properties from OCT intensity data have been explored in the context of a number of biomedical applications seeking to access this sub-resolution tissue microstructure and thereby increase the diagnostic impact of OCT. Most commonly, the optical attenuation coefficient, an analogue of the scattering coefficient, has been used as a surrogate metric linking OCT intensity to subcellular particle characteristics. To record attenuation coefficient data that is accurately representative of the underlying physical properties of a given sample, it is necessary to account for the impact of the OCT imaging system itself on the distribution of light intensity in the sample, including the numerical aperture (NA) of the system and the location of the focal plane with respect to the sample surface, as well as the potential contribution of multiple scattering to the reconstructed intensity signal. Although these considerations complicate attenuation coefficient measurement and interpretation, a suitably calibrated system may potentiate a powerful strategy for gaining additional information about the scattering behavior and microstructure of samples. In this work, we experimentally show that altering the OCT system geometry minimally impacts measured attenuation coefficients in samples presumed to be singly scattering, but changes these measurements in more highly scattering samples. Using both depth-resolved attenuation coefficient data and layer-resolved backscattering coefficients, we demonstrate the retrieval of scattering particle diameter and concentration in tissue-mimicking phantoms, and the impact of presumed multiple scattering on these calculations. We further extend our approach to characterize a murine brain tissue sample and highlight a tumor-bearing region based on increased scattering particle density. Through these methods, we not only enhance conventional OCT attenuation coefficient analysis by decoupling the independent effects of particle size and concentration, but also discriminate areas of strong multiple scattering through minor changes to system topology to provide a framework for assessing the accuracy of these measurements.

     
    more » « less
  4. Abstract

    Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.

     
    more » « less
  5. Brain tumor surgery involves a delicate balance between maximizing the extent of tumor resection while minimizing damage to healthy brain tissue that is vital for neurological function. However, differentiating between tumor, particularly infiltrative disease, and healthy brain in-vivo remains a significant clinical challenge. Here we demonstrate that quantitative oblique back illumination microscopy (qOBM)—a novel label-free optical imaging technique that achieves tomographic quantitative phase imaging in thick scattering samples—clearly differentiates between healthy brain tissue and tumor, including infiltrative disease. Data from a bulk and infiltrative brain tumor animal model show that qOBM enables quantitative phase imaging of thick fresh brain tissues with remarkable cellular and subcellular detail that closely resembles histopathology using hematoxylin and eosin (H&E) stained fixed tissue sections, the gold standard for cancer detection. Quantitative biophysical features are also extracted from qOBM which yield robust surrogate biomarkers of disease that enable (1) automated tumor and margin detection with high sensitivity and specificity and (2) facile visualization of tumor regions. Finally, we develop a low-cost, flexible, fiber-based handheld qOBM device which brings this technology one step closer to in-vivo clinical use. This work has significant implications for guiding neurosurgery by paving the way for a tool that delivers real-time, label-free, in-vivo brain tumor margin detection.

     
    more » « less