skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid spatial–temporal Mueller matrix imaging spectropolarimeter for high throughput plant phenotyping
Many correlations exist between spectral reflectance or transmission with various phenotypic responses from plants. Of interest to us are metabolic characteristics, namely, how the various polarimetric components of plants may correlate to underlying environmental, metabolic, and genotypic differences among different varieties within a given species, as conducted during large field experimental trials. In this paper, we overview a portable Mueller matrix imaging spectropolarimeter, optimized for field use, by combining a temporal and spatial modulation scheme. Key aspects of the design include minimizing the measurement time while maximizing the signal-to-noise ratio by mitigating systematic error. This was achieved while maintaining an imaging capability across multiple measurement wavelengths, spanning the blue to near-infrared spectral region (405–730 nm). To this end, we present our optimization procedure, simulations, and calibration methods. Validation results, which were taken in redundant and non-redundant measurement configurations, indicated that the polarimeter provides average absolute errors of (5.3±2.2)×10−3and (7.1±3.1)×10−3, respectively. Finally, we provide preliminary field data (depolarization, retardance, and diattenuation) to establish baselines of barren and non-barrenZea maizehybrids (G90 variety), as captured from various leaf and canopy positions during our summer 2022 field experiments. Results indicate that subtle variations in retardance and diattenuation versus leaf canopy position may be present before they are clearly visible in the spectral transmission.  more » « less
Award ID(s):
1809753
PAR ID:
10470578
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Applied Optics
Date Published:
Journal Name:
Applied Optics
Volume:
62
Issue:
8
ISSN:
1559-128X
Page Range / eLocation ID:
2078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct-collapse black holes (DCBHs) of mass ∼104 − 105 Mthat form in HI-cooling halos in the early Universe are promising progenitors of the ≳109 Msupermassive black holes that fuel observedz ≳ 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up toz ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈1 − 5 μm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼29 AB mag. We identify two objects with spectral energy distributions consistent with theoretical DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of ≲5 × 10−4comoving Mpc−3(cMpc−3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the theoretical models atz ≈ 6 − 14. 
    more » « less
  2. Rovibrational spectral data for several tetra-atomic silicon carbide clusters (TASCCs) are computed in this work using a CCSD(T)-F12b/cc-pCVTZ-F12 quartic force field. Accurate theoretical spectroscopic data may facilitate the observation of TASCCs in the interstellar medium which may lead to a more complete understanding of how the smallest silicon carbide (SiC) solids are formed. Such processes are essential for understanding SiC dust grain formation. Due to SiC dust prevalence in the interstellar medium, this may also shed light on subsequent planetary formation. Rhomboidal Si2C2is shown here to have a notably intense (247 km mol−1) anharmonic vibrational frequency at 988.1 cm−1(10.1 μm) forν2, falling into one of the spectral emission features typically associated with unknown infrared bands of various astronomical regions. Notable intensities are also present for several of the computed anharmonic vibrational frequencies including the cyclic forms of C4, SiC3, Si3C, and Si4. These features in the 6–10 μm range are natural targets for infrared observation with theJames Webb Space Telescope(JWST)’s MIRI instrument. Additionally,t-Si2C2,d-Si3C, andr-SiC3each possess dipole moments of greater than 2.0 D making them interesting targets for radioastronomical searches especially sinced-SiC3is already known in astrophysical media. 
    more » « less
  3. Abstract We present in this paper (Paper II of the series) a 35 arcmin2JWST/NIRCam imaging and wide-field slitless spectroscopy mosaic centered on J0305–3150, a luminous quasar atz= 6.61. The F356W grism data reveal 124 [Oiii]+Hβemitters at 5.3 < z < 7, 53 of which constitute a protocluster spanning (10 cMpc)2across 6.5 < z < 6.8. We find no evidence of any broad-line active galactic nucleus (AGN) in individual galaxies or stacking, reporting a median HβFWHM of 585 ± 152 km s−1; however, the mass–excitation diagram and “little red dot” color and compactness criteria suggest that there are a few AGN candidates on the outskirts of the protocluster. We fit the spectral energy distributions (SEDs) of the [Oiii] emitters withProspectorandBagpipesand find that none of the SED-derived properties (stellar mass, age, or star formation rate) correlate with proximity to the quasar. While there is no correlation between galaxy age and local galaxy density, we find modest correlations of local galaxy density with increasing stellar mass, decreasing 10–100 Myr star formation rate ratios, and decreasing nebular line equivalent widths. We further find that the protocluster galaxies are consistent with being more massive, being older, and hosting higher star formation rates than the field sample at the 3σlevel, distributed in a filamentary structure that supports inside-out formation of the protocluster. There is modest evidence that galaxy evolution proceeds differently as a function of the density of local environment within protoclusters during the epoch of reionization, and the central quasar has little effect on the galaxy properties of the surrounding structure. 
    more » « less
  4. Both plant physiology and atmospheric chemistry are substantially altered by the emission of volatile isoprenoids (VI), such as isoprene and monoterpenes, from plant leaves. Yet, since gaining scientific attention in the 1950’s, empirical research on leaf VI has been largely confined to laboratory experiments and atmospheric observations. Here, we introduce a new field instrument designed to bridge the scales from leaf to atmosphere, by enabling precision VI detection in real time from plants in their natural ecological setting. With a field campaign in the Brazilian Amazon, we reveal an unexpected distribution of leaf emission capacities (EC) across the vertical axis of the forest canopy, with EC peaking in the mid-canopy instead of the sun-exposed canopy surface, and moderately high emissions occurring in understory specialist species. Compared to the simple interpretation that VI protect leaves from heat stress at the hot canopy surface, our results encourage a more nuanced view of the adaptive role of VI in plants. We infer that forest emissions to the atmosphere depend on the dynamic microenvironments imposed by canopy structure, and not simply on canopy surface conditions. We provide a new emissions inventory from 52 tropical tree species, revealing moderate consistency in EC within taxonomic groups. We highlight priorities in leaf volatiles research that require field-portable detection systems. Our self-contained, portable instrument provides real-time detection and live measurement feedback with precision and detection limits better than 0.5 nmol VI m –2 leaf s –1 . We call the instrument ‘PORCO’ based on the gas detection method: photoionization of organic compounds. We provide a thorough validation of PORCO and demonstrate its capacity to detect ecologically driven variation in leaf emission rates and thus accelerate a nascent field of science: the ecology and ecophysiology of plant volatiles. 
    more » « less
  5. Both plant physiology and atmospheric chemistry are substantially altered by the emission of volatile isoprenoids (VI), such as isoprene and monoterpenes, from plant leaves. Yet, since gaining scientific attention in the 1950’s, empirical research on leaf VI has been largely confined to laboratory experiments and atmospheric observations. Here, we introduce a new field instrument designed to bridge the scales from leaf to atmosphere, by enabling precision VI detection in real time from plants in their natural ecological setting. With a field campaign in the Brazilian Amazon, we reveal an unexpected distribution of leaf emission capacities (EC) across the vertical axis of the forest canopy, with EC peaking in the mid-canopy instead of the sun-exposed canopy surface, and moderately high emissions occurring in understory specialist species. Compared to the simple interpretation that VI protect leaves from heat stress at the hot canopy surface, our results encourage a more nuanced view of the adaptive role of VI in plants. We infer that forest emissions to the atmosphere depend on the dynamic microenvironments imposed by canopy structure, and not simply on canopy surface conditions. We provide a new emissions inventory from 52 tropical tree species, revealing moderate consistency in EC within taxonomic groups. We highlight priorities in leaf volatiles research that require field-portable detection systems. Our self-contained, portable instrument provides real-time detection and live measurement feedback with precision and detection limits better than 0.5 nmol VI m–2leaf s–1. We call the instrument ‘PORCO’ based on the gas detection method: photoionization of organic compounds. We provide a thorough validation of PORCO and demonstrate its capacity to detect ecologically driven variation in leaf emission rates and thus accelerate a nascent field of science: the ecology and ecophysiology of plant volatiles. 
    more » « less