Abstract Sexual dimorphism describes phenotypic differences between the sexes; the most prominent of which is sexual size dimorphism (SSD). Rensch’s rule (RR) is an allometric trend in which SSD increases in male-larger taxa and decreases in female-larger ones. Covariation between a trait and overall size within and across species can both be affected by sexual and natural selection. Thus, intraspecific allometric variation could influence the expression of RR. Here we used computer simulations to dissect how RR emerges under specific allometric patterns of intraspecific sexual differentiation in a trait. We found that sexual differentiation in static allometric slopes is the main determinant of RR. Based on our findings, RR and its converse can manifest in both body size and other traits. As a realistic showcase, we also examined RR and static allometry of different body parts in Mediterranean green lizards to establish whether intraspecific and evolutionary allometry are linked. Here, we identified RR and its converse for different traits, where the amount of sexual differentiation in static allometric slopes within species had a significant contribution to RR. Integrating the simulations and the empirical case we corroborate that sexual differentiation in static allometric slopes is a major parameter affecting evolutionary allometry.
more »
« less
Wings of fringed fruit-eating bats (Artibeus fimbriatus) are highly integrated biological airfoils from perspectives of secondary-sexual dimorphism, allometry and modularity
Phenotypic variability is ubiquitous. This is especially true in bats where families such as Phyllostomidae encompass as much phenotypic variability as some entire orders of mammals. Typically, phenotypic variability is characterized based on cranial morphology with studies of other functionally important aspects of the phenotype such as legs, feet and wings less frequent. We examined patterns of secondary-sexual dimorphism and allometry of wing elements of the fringed fruit-eating bat (Artibeus fimbriatus) as well as examined for the first time modularity of bat wings. Patterns were based on 13 wing measurements taken from 21 female and 15 males from eastern Paraguay. From a multivariate perspective A. fimbriatus exhibited significant secondary-sexual dimorphism. Females were larger than males for all 13 wing characteristics with significant differences involving the last phalanx of the 4th and 5th digits. Female wings were also relatively larger than male wings from a multivariate perspective as well as the last phalanx of the 4th and 5th digit, after adjusting for wing size based on forearm length. Wing elements were highly variable regarding allometric relationships with some exhibiting no allometric patterns, and others exhibiting isometry or hyperallometry depending on the element. Wings exhibited significant modularity with metacarpals, proximal phalanges and distal phalanges each representing a discrete module. Wings of A. fimbriatus exhibit substantive patterns of dimorphism, allometry and modularity. While the Big Mother Hypothesis is a strong theoretical construct to explain wing dimorphism, there is yet no sound theoretical basis to patterns of allometry and modularity of the wing. Indeed, trying to understand the determinants of variation in wing morphology is ripe for future investigation.
more »
« less
- Award ID(s):
- 2101909
- PAR ID:
- 10470646
- Publisher / Repository:
- Linnean Society
- Date Published:
- Journal Name:
- Biological Journal of the Linnean Society
- ISSN:
- 0024-4066
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sexual dimorphism is a major component of morphological variation across the tree of life, but the mechanisms underlying phenotypic differences between sexes of a single species are poorly understood. We examined the population genomics and biogeography of the common palmfly Elymnias hypermnestra , a dual mimic in which female wing colour patterns are either dark brown (melanic) or bright orange, mimicking toxic Euploea and Danaus species, respectively. As males always have a melanic wing colour pattern, this makes E. hypermnestra a fascinating model organism in which populations vary in sexual dimorphism. Population structure analysis revealed that there were three genetically distinct E. hypermnestra populations, which we further validated by creating a phylogenomic species tree and inferring historical barriers to gene flow. This species tree demonstrated that multiple lineages with orange females do not form a monophyletic group, and the same is true of clades with melanic females. We identified two single nucleotide polymorphisms (SNPs) near the colour patterning gene WntA that were significantly associated with the female colour pattern polymorphism, suggesting that this gene affects sexual dimorphism. Given WntA 's role in colour patterning across Nymphalidae, E. hypermnestra females demonstrate the repeatability of the evolution of sexual dimorphism.more » « less
-
Abstract Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull‐headed dung beetleOnthophagus tauruswhich is characterized by the polyphenic expression of horned (‘major’) and hornless (‘minor’) male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph‐specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph‐based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibiashapewas also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition acrossO. tauruspopulations. We discuss how sexual selection may shape morph‐specific integration, compensation, and allometry across populations.more » « less
-
Abstract The evolution of miniaturization can result in dramatic alterations of morphology, physiology, and behavior; however, the effects of miniaturization on sexual dimorphism remain largely unknown. Here we investigate how miniaturization influences patterns of sexual size dimorphism (SSD) in geckos. Measuring 1,875 individuals from 131 species, we characterized patterns of SSD relative to body size across two families. We found that miniaturized species were more female biased than non-miniaturized species. Additionally, one family that contained many miniaturized species (Sphaerodactylidae) displayed allometric patterns in SSD with body size, where larger species were male biased and smaller species were more female biased. Smaller species in this lineage also produced proportionally larger eggs. By contrast, another family containing few miniaturized species (Phyllodactylidae) displayed a more isometric trend. Together, these observations are consistent with the hypothesis that selection for increased reproductive success in small species of Sphaerodactylidae results in female-biased SSD in these taxa, which in turn drives the positive SSD allometry observed in this lineage. Thus, selection for increased miniaturization in the clade may be offset by selection on maintaining a female size in smaller taxa that ensures reproductive success.more » « less
-
Phenomics requires quantification of large volumes of image data, necessitating high throughput image processing approaches. Existing image processing pipelines for Drosophila wings, a powerful genetic model for studying the underlying genetics for a broad range of cellular and developmental processes, are limited in speed, precision, and functional versatility. To expand on the utility of the wing as a phenotypic screening system, we developed MAPPER, an automated machine learning-based pipeline that quantifies high-dimensional phenotypic signatures, with each dimension quantifying a unique morphological feature of the Drosophila wing. MAPPER magnifies the power of Drosophila phenomics by rapidly quantifying subtle phenotypic differences in sample populations. We benchmarked MAPPER’s accuracy and precision in replicating manual measurements to demonstrate its widespread utility. The morphological features extracted using MAPPER reveal variable sexual dimorphism across Drosophila species and unique underlying sex-specific differences in morphogen signaling in male and female wings. Moreover, the length of the proximal-distal axis across the species and sexes shows a conserved scaling relationship with respect to the wing size. In sum, MAPPER is an open-source tool for rapid, high-dimensional analysis of large imaging datasets. These high-content phenomic capabilities enable rigorous and systematic identification of genotype-to-phenotype relationships in a broad range of screening and drug testing applications and amplify the potential power of multimodal genomic approaches.more » « less
An official website of the United States government

