Contrastive learning is a self-supervised representation learning method that achieves milestone performance in various classification tasks. However, due to its unsupervised fashion, it suffers from the false negative sample problem: randomly drawn negative samples that are assumed to have a different label but actually have the same label as the anchor. This deteriorates the performance of contrastive learning as it contradicts the motivation of contrasting semantically similar and dissimilar pairs. This raised the attention and the importance of finding legitimate negative samples, which should be addressed by distinguishing between 1) true vs. false negatives; 2) easy vs. hard negatives. However, previous works were limited to the statistical approach to handle false negative and hard negative samples with hyperparameters tuning. In this paper, we go beyond the statistical approach and explore the connection between hard negative samples and data bias. We introduce a novel debiased contrastive learning method to explore hard negatives by relative difficulty referencing the bias-amplifying counterpart. We propose triplet loss for training a biased encoder that focuses more on easy negative samples. We theoretically show that the triplet loss amplifies the bias in self-supervised representation learning. Finally, we empirically show the proposed method improves downstream classification performance.
more »
« less
Max-Margin Contrastive Learning
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.
more »
« less
- Award ID(s):
- 1846088
- PAR ID:
- 10470665
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 36
- Issue:
- 8
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 8220 to 8230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, contrastive learning has achieved great results in self-supervised learning, where the main idea is to pull two augmentations of an image (positive pairs) closer compared to other random images (negative pairs). We argue that not all negative images are equally negative. Hence, we introduce a self-supervised learning algorithm where we use a soft similarity for the negative images rather than a binary distinction between positive and negative pairs. We iteratively distill a slowly evolving teacher model to the student model by capturing the similarity of a query image to some random images and transferring that knowledge to the student. Specifically, our method should handle unbalanced and unlabeled data better than existing contrastive learning methods, because the randomly chosen negative set might include many samples that are semantically similar to the query image. In this case, our method labels them as highly similar while standard contrastive methods label them as negatives. Our method achieves comparable results to the state-of-the-art models.more » « less
-
Supervised learning of skeleton sequence encoders for action recognition has received significant attention in recent times. However, learning such encoders without labels continues to be a challenging problem. While prior works have shown promising results by applying contrastive learning to pose sequences, the quality of the learned representations is often observed to be closely tied to data augmentations that are used to craft the positives. However, augmenting pose sequences is a difficult task as the geometric constraints among the skeleton joints need to be enforced to make the augmentations realistic for that action. In this work, we propose a new contrastive learning approach to train models for skeleton-based action recognition without labels. Our key contribution is a simple module, HaLP – to Hallucinate Latent Positives for contrastive learning. Specifically, HaLP explores the latent space of poses in suitable directions to generate new positives. To this end, we present a novel optimization formulation to solve for the synthetic positives with an explicit control on their hardness. We propose approximations to the objective, making them solvable in closed form with minimal overhead. We show via experiments that using these generated positives within a standard contrastive learning framework leads to consistent improvements across benchmarks such as NTU-60, NTU- 120, and PKU-II on tasks like linear evaluation, transfer learning, and kNN evaluation. Our code can be found at https://github.com/anshulbshah/HaLP.more » « less
-
Self-supervised learning through contrastive representations is an emergent and promising avenue, aiming at alleviating the availability of labeled data. Recent research in the field also demonstrates its viability for several downstream tasks, henceforth leading to works that implement the contrastive principle through inno- vative loss functions and methods. However, despite achieving impressive progress, most methods depend on prohibitively large batch sizes and compute requirements for good performance. In this work, we propose the AUC-Contrastive Learning, a new approach to contrastive learning that demonstrates robust and competitive performance in compute-limited regimes. We propose to incorporate the contrastive objective within the AUC-maximization framework, by noting that the AUC metric is maximized upon enhancing the probability of the network’s binary prediction difference between positive and negative samples which inspires adequate embed- ding space arrangements in representation learning. Unlike standard contrastive methods, when performing stochastic optimization, our method maintains unbiased stochastic gradients and thus is more robust to batchsizes as opposed to standard stochastic optimization problems. Remarkably, our method with a batch size of 256, outperforms several state-of-the-art methods that may need much larger batch sizes (e.g., 4096), on ImageNet and other standard datasets. Experiments on transfer learning and few-shot learning tasks also demonstrate the downstream viability of our method. Code is available at AUC-CL.more » « less
-
In this paper, we study the problem of unsupervised graph representation learning by harnessing the control properties of dynamical networks defined on graphs. Our approach introduces a novel framework for contrastive learning, a widely prevalent technique for unsupervised representation learning. A crucial step in contrastive learning is the creation of ‘augmented’ graphs from the input graphs. Though different from the original graphs, these augmented graphs retain the original graph’s structural characteristics. Here, we propose a unique method for generating these augmented graphs by leveraging the control properties of networks. The core concept revolves around perturbing the original graph to create a new one while preserving the controllability properties specific to networks and graphs. Compared to the existing methods, we demonstrate that this innovative approach enhances the effectiveness of contrastive learning frameworks, leading to superior results regarding the accuracy of the classification tasks. The key innovation lies in our ability to decode the network structure using these control properties, opening new avenues for unsupervised graph representation learning.more » « less
An official website of the United States government

