skip to main content


This content will become publicly available on June 6, 2024

Title: FEED PETs: Further Experimentation and Expansion on the Disambiguation of Potentially Euphemistic Terms.
Transformers have been shown to work well for the task of English euphemism disambiguation, in which a potentially euphemistic term (PET) is classified as euphemistic or non-euphemistic in a particular context. In this study, we expand on the task in two ways. First, we annotate PETs for vagueness, a linguistic property associated with euphemisms, and find that transformers are generally better at classifying vague PETs, suggesting linguistic differences in the data that impact performance. Second, we present novel euphemism corpora in three different languages: Yoruba, Spanish, and Mandarin Chinese. We perform euphemism disambiguation experiments in each language using multilingual transformer models mBERT and XLM-RoBERTa, establishing preliminary results from which to launch future work.  more » « less
Award ID(s):
1704113
NSF-PAR ID:
10470678
Author(s) / Creator(s):
Publisher / Repository:
12th Joint Conference on Lexical and Computational Semantics (SEM 2023)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Euphemisms have not received much attention in natural language processing, despite being an important element of polite and figurative language. Euphemisms prove to be a difficult topic, not only because they are subject to language change, but also because humans may not agree on what is a euphemism and what is not. Nevertheless, the first step to tackling the issue is to collect and analyze examples of euphemisms. We present a corpus of potentially euphemistic terms (PETs) along with example texts from the GloWbE corpus. Additionally, we present a subcorpus of texts where these PETs are not being used euphemistically, which may be useful for future applications. We also discuss the results of multiple analyses run on the corpus. Firstly, we find that sentiment analysis on the euphemistic texts supports that PETs generally decrease negative and offensive sentiment. Secondly, we observe cases of disagreement in an annotation task, where humans are asked to label PETs as euphemistic or not in a subset of our corpus text examples. We attribute the disagreement to a variety of potential reasons, including if the PET was a commonly accepted term (CAT). 
    more » « less
  2. This paper presents The Shared Task on Euphemism Detection for the Third Workshop on Figurative Language Processing (FigLang 2022) held in conjunction with EMNLP 2022. Participants were invited to investigate the euphemism detection task: given input text, identify whether it contains a euphemism. The input data is a corpus of sentences containing potentially euphemistic terms (PETs) collected from the GloWbE corpus (Davies and Fuchs, 2015), and are human-annotated as containing either a euphemistic or literal usage of a PET. In this paper, we present the results and analyze the common themes, methods and findings of the participating teams. 
    more » « less
  3. This paper presents a linguistically driven proof of concept for finding potentially euphemistic terms, or PETs. Acknowledging that PETs tend to be commonly used expressions for a certain range of sensitive topics, we make use of distributional similarities to select and filter phrase candidates from a sentence and rank them using a set of simple sentimentbased metrics. We present the results of our approach tested on a corpus of sentences containing euphemisms, demonstrating its efficacy for detecting single and multi-word PETs from a broad range of topics. We also discuss future potential for sentiment-based methods on this task. 
    more » « less
  4. null (Ed.)
    Fringe groups and organizations have a long history of using euphemisms---ordinary-sounding words with a secret meaning---to conceal what they are discussing. Nowadays, one common use of euphemisms is to evade content moderation policies enforced by social media platforms. Existing tools for enforcing policy automatically rely on keyword searches for words on a ``ban list'', but these are notoriously imprecise: even when limited to swearwords, they can still cause embarrassing false positives. When a commonly used ordinary word acquires a euphemistic meaning, adding it to a keyword-based ban list is hopeless: consider ``pot'' (storage container or marijuana?) or ``heater'' (household appliance or firearm?). The current generation of social media companies instead hire staff to check posts manually, but this is expensive, inhumane, and not much more effective. It is usually apparent to a human moderator that a word is being used euphemistically, but they may not know what the secret meaning is, and therefore whether the message violates policy. Also, when a euphemism is banned, the group that used it need only invent another one, leaving moderators one step behind. This paper will demonstrate unsupervised algorithms that, by analyzing words in their sentence-level context, can both detect words being used euphemistically, and identify the secret meaning of each word. Compared to the existing state of the art, which uses context-free word embeddings, our algorithm for detecting euphemisms achieves 30--400\% higher detection accuracies of unlabeled euphemisms in a text corpus. Our algorithm for revealing euphemistic meanings of words is the first of its kind, as far as we are aware. In the arms race between content moderators and policy evaders, our algorithms may help shift the balance in the direction of the moderators. 
    more » « less
  5. Abstract Background

    Natural language processing (NLP) tasks in the health domain often deal with limited amount of labeled data due to high annotation costs and naturally rare observations. To compensate for the lack of training data, health NLP researchers often have to leverage knowledge and resources external to a task at hand. Recently, pretrained large-scale language models such as the Bidirectional Encoder Representations from Transformers (BERT) have been proven to be a powerful way of learning rich linguistic knowledge from massive unlabeled text and transferring that knowledge to downstream tasks. However, previous downstream tasks often used training data at such a large scale that is unlikely to obtain in the health domain. In this work, we aim to study whether BERT can still benefit downstream tasks when training data are relatively small in the context of health NLP.

    Method

    We conducted a learning curve analysis to study the behavior of BERT and baseline models as training data size increases. We observed the classification performance of these models on two disease diagnosis data sets, where some diseases are naturally rare and have very limited observations (fewer than 2 out of 10,000). The baselines included commonly used text classification models such as sparse and dense bag-of-words models, long short-term memory networks, and their variants that leveraged external knowledge. To obtain learning curves, we incremented the amount of training examples per disease from small to large, and measured the classification performance in macro-averaged$$F_{1}$$F1score.

    Results

    On the task of classifying all diseases, the learning curves of BERT were consistently above all baselines, significantly outperforming them across the spectrum of training data sizes. But under extreme situations where only one or two training documents per disease were available, BERT was outperformed by linear classifiers with carefully engineered bag-of-words features.

    Conclusion

    As long as the amount of training documents is not extremely few, fine-tuning a pretrained BERT model is a highly effective approach to health NLP tasks like disease classification. However, in extreme cases where each class has only one or two training documents and no more will be available, simple linear models using bag-of-words features shall be considered.

     
    more » « less