skip to main content

Title: Jupiter Atmospheric Models and Outer Boundary Conditions for Giant Planet Evolutionary Calculations

We present updated atmospheric tables suitable for calculating the post-formation evolution and cooling of Jupiter and Jupiter-like exoplanets. These tables are generated using a 1D radiative transfer modeling code that incorporates the latest opacities and realistic prescriptions for stellar irradiation and ammonia clouds. To ensure the accuracy of our model parameters, we calibrate them against the measured temperature structure and geometric albedo spectrum of Jupiter, its effective temperature, and its inferred internal temperature. As a test case, we calculate the cooling history of Jupiter using an adiabatic and homogeneous interior and compare with extant models now used to evolve Jupiter and the giant planets. We find that our model reasonably matches Jupiter after evolving a hot-start initial condition to the present age of the solar system, with a discrepancy in brightness temperature/radius within 2%. Our algorithm allows us to customize for different cloud, irradiation, and metallicity parameters. This class of boundary conditions can be used to study the evolution of solar system giant planets and exoplanets with more complicated interior structures and nonadiabatic, inhomogeneous internal profiles.

more » « less
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 36
["Article No. 36"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Exoplanets number in their thousands, and the number is ever increasing with the advent of new surveys and improved instrumentation. One of the most surprising things we have learnt from these discoveries is not that small-rocky planets in their stars habitable zones are likely to be common, but that the most typical size of exoplanets is that not seen in our solar system—radii between that of Neptune and the Earth dubbed mini-Neptunes and super-Earths. In fact, a transiting exoplanet is four times as likely to be in this size regime than that of any giant planet in our solar system. Investigations into the atmospheres of giant hydrogen/helium dominated exoplanets has pushed down to Neptune and mini-Neptune-sized worlds revealing molecular absorption from water, scattering and opacity from clouds, and measurements of atmospheric abundances. However, unlike measurements of Jupiter, or even Saturn sized worlds, the smaller giants lack a ground truth on what to expect or interpret from their measurements. How did these sized worlds form and evolve and was it different from their larger counterparts? What is their internal composition and how does that impact their atmosphere? What informs the energy budget of these distant worlds? In this we discuss what characteristics we can measure for exoplanets, and why a mission to the ice giants in our solar system is the logical next step for understanding exoplanets. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’. 
    more » « less
  2. Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars. 
    more » « less

    Each of the giant planets within the Solar system has large moons but none of these moons have their own moons (which we call submoons). By analogy with studies of moons around short-period exoplanets, we investigate the tidal-dynamical stability of submoons. We find that 10 km-scale submoons can only survive around large (1000 km-scale) moons on wide-separation orbits. Tidal dissipation destabilizes the orbits of submoons around moons that are small or too close to their host planet; this is the case for most of the Solar system’s moons. A handful of known moons are, however, capable of hosting long-lived submoons: Saturn’s moons Titan and Iapetus, Jupiter’s moon Callisto, and Earth’s Moon. Based on its inferred mass and orbital separation, the newly discovered exomoon candidate Kepler-1625b-I can in principle host a large submoon, although its stability depends on a number of unknown parameters. We discuss the possible habitability of submoons and the potential for subsubmoons. The existence, or lack thereof, of submoons may yield important constraints on satellite formation and evolution in planetary systems.

    more » « less
  4. Exoplanets in the ultra-hot Jupiter regime provide an excellent laboratory for testing the impact of stellar irradiation on the dynamics and chemical composition of gas giant atmospheres. In this study, we observed two transits of the ultra-hot Jupiter WASP-189 b with MAROON-X/Gemini-North to probe its high-altitude atmospheric layers, using strong absorption lines. We derived posterior probability distributions for the planetary and stellar parameters by calculating the stellar spectrum behind the planet at every orbital phase during the transit. This was used to correct the Rossiter–McLaughlin imprint on the transmission spectra. Using differential transmission spectroscopy, we detect strong absorption lines of Ca+, Ba+, Na, Hα, Mg, Fe, and Fe+, providing an unprecedented and detailed view of the atmospheric chemical composition. Ca+absorption is particularly well suited for analysis through time-resolved narrow-band spectroscopy, owing to its transition lines formed in high-altitude layers. The spectral absorption lines show no significant blueshifts that would indicate high-altitude day-to-night winds, and further analysis is needed to investigate the implications for atmospheric dynamics. These high signal-to-noise observations provide a benchmark data set for testing high-resolution retrievals and the assumptions of atmospheric models. We also simulate observations of WASP-189 b with ANDES/ELT, and show that ANDES will be highly sensitive to the individual absorption lines of a myriad of elements and molecules, including TiO and CO.

    more » « less
  5. Abstract Exoplanet and brown dwarf atmospheres commonly show signs of disequilibrium chemistry. In the James Webb Space Telescope (JWST) era, high-resolution spectra of directly imaged exoplanets will allow the characterization of their atmospheres in more detail, and allow systematic tests for the presence of chemical species that deviate from thermochemical equilibrium in these atmospheres. Constraining the presence of disequilibrium chemistry in these atmospheres as a function of parameters such as their effective temperature and surface gravity will allow us to place better constraints on the physics governing these atmospheres. This paper is part of a series of works presenting the Sonora grid of atmosphere models. In this paper, we present a grid of cloud-free, solar metallicity atmospheres for brown dwarfs and wide-separation giant planets with key molecular species such as CH 4 , H 2 O, CO, and NH 3 in disequilibrium. Our grid covers atmospheres with T eff ∈ [500 K, 1300 K], log g ∈ [3.0, 5.5] (cgs) and an eddy diffusion parameter of log K zz = 2 , 4 and 7 (cgs). We study the effect of different parameters within the grid on the temperature and composition profiles of our atmospheres. We discuss their effect on the near-infrared colors of our model atmospheres and the detectability of CH 4 , H 2 O, CO, and NH 3 using the JWST. We compare our models against existing MKO and Spitzer observations of brown dwarfs and verify the importance of disequilibrium chemistry for T dwarf atmospheres. Finally, we discuss how our models can help constrain the vertical structure and chemical composition of these atmospheres. 
    more » « less