Resource sharing is fundamental to the design of telecommunication networks. The technology, economic and policy forces shaping the transition to next-generation digital networking infrastructure—characterized here as “5G+” (for 5G and beyond)—make new and evolved forms of edge sharing a necessity. Despite this necessity, most of the economic and policy research on Network Sharing Agreements (NSAs) has focused on sharing among service providers offering retail services via networks owned and operated by legacy fixed and mobile network operators (MNOs). In this essay, we make the case for why increased and more dynamic options for sharing, in particular of end-user owned network infrastructure, should be embraced for the future of NSAs. Furthermore, we explain how such a novel sharing paradigm must be matched by appropriate regulatory policies.
more » « less- Award ID(s):
- 2228470
- NSF-PAR ID:
- 10470806
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Computer Science
- Volume:
- 5
- ISSN:
- 2624-9898
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Large-scale network-cloud ecosystems are fundamental infrastructures to support future 5G/6G services, and their resilience is a primary societal concern for the years to come. Differently from a single-entity ecosystem (in which one entity owns the whole infrastructure), in multi-entity ecosystems (in which the networks and datacenters are owned by different entities) cooperation among such different entities is crucial to achieve resilience against large-scale failures. Such cooperation is challenging since diffident entities may not disclose confidential information, e.g., detailed resource availability. To enhance the resilience of multi-entity ecosystems, carriers are important as all the entities rely on carriers’ communication services. Thus, in this study we investigate how to perform carrier cooperative recovery in case of large-scale failures/disasters. We propose a two-stage cooperative recovery planning by incorporating a coordinated scheduling for swift recovery. Through preliminary numerical evaluation, we confirm the potential benefit of carrier cooperation in terms of both recovery time and recovery cost/burden reduction.more » « less
-
Telecommunication industries and spectrum regulation authorities are increasingly interested in unlocking the 12 GHz band for two-way 5G terrestrial services. The 12 GHz band has a much larger bandwidth than the current sub-6 GHz band and better propagation characteristics than the millimeter wave (mmWave) band. Thus, the 12 GHz band offers great potential for improving the coverage and capacity of terrestrial 5G networks. However, interference issues between incumbent receivers and 5G radio links present a major challenge in the 12 GHz band. If one could exploit the dynamic contexts inherent to the 12 GHz band, one could reform spectrum sharing policy to create spectrum access opportunities for 5G mobile services. This article makes three contributions. First, it presents the characteristics and challenges of the 12 GHz band. Second, we explain the characteristics and requirements for spectrum sharing at a variety of levels to resolve those issues. Lastly, we present several research opportunities to enable harmonious coexistence of incumbent licensees and 5G networks within the 12 GHz band.more » « less
-
As we progress from 5G to emerging 6G wireless, the spectrum of cellular communication services is set to broaden significantly, encompassing real-time remote healthcare applications and sophisticated smart infrastructure solutions, among others. This expansion brings to the forefront a diverse set of service requirements, underscoring the challenges and complexities inherent in next-generation networks. In the realm of 5G, Enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low-Latency Communications (URLLC) have been pivotal service categories. As we venture into the 6G era, these foundational use cases will evolve and embody additional performance criteria, further diversifying the network service portfolio. This evolution amplifies the necessity for dynamic and efficient resource allocation strategies capable of balancing the diverse service demands. In response to this need, we introduce the Intelligent Dynamic Resource Allocation and Puncturing (IDRAP) framework. Leveraging Deep Reinforcement Learning (DRL), IDRAP is designed to balance between the bandwidth-intensive requirements of eMBB services and the latency and reliability needs of URLLC users. The performance of IDRAP is evaluated and compared against other resource management solutions, including Intelligent Dynamic Resource Slicing (IDRS), Policy Gradient Actor-Critic Learning (PGACL), System-Wide Tradeoff Scheduling (SWTS), Sum-Log, and Sum-Rate.The results show an improved Service Satisfaction Level (SSL) for eMBB users while maintaining the essential SSL threshold for URLLC services.more » « less
-
In this paper, we consider the scenario in which mobile network operators (MNOs) share network infrastructure for operating 5G new radio (NR) services in unlicensed bands, whereby they reduce their deployment cost and extend their service coverage. Conserving privacy of MNOs’ users, maintaining fairness with coexisting technologies such as Wi-Fi, and reducing communication overhead between MNOs are among top challenges limiting the feasibility and success of this sharing paradigm. To resolve the above issues, we present MatchMaker, a novel framework for joint network infrastructure and unlicensed spectrum sharing among MNOs. MatchMaker extends the 3GPP’s infrastructure sharing architecture, originally introduced for licensed bands, to have privacy-conserving protocols for managing the shared infrastructure. We also propose a novel privacy-conserving algorithm for channel assignment among MNOs. Although achieving an optimal channel assignment for MNOs over unlicensed bands dictates having global knowledge about MNOs’ network conditions and their interference zones, our channel assignment algorithm does not require such global knowledge and maximizes the cross-technology fairness for the coexisting systems. We let the manager, controlling the shared infrastructure, estimate potential interference among MNOs and Wi-Fi systems by asking MNOs to propose their preferred channel assignment and monitoring their average contention delay overtime. The manager only accepts/rejects MNOs’ proposals and builds contention graph between all co-located devices. Our results show that MatchMaker achieves fairness up to 90% of the optimal alpha-fairness-based channel assignment while still preserving MNOs’ privacy.more » « less
-
Under NASA’s Artemis program, NASA is planning to send astronauts back to the Moon in the next couple of years. Near term missions will be analogous but much more sophisticated versions of the last couple of Apollo missions. However, unlike Apollo, this time NASA intends to put the infrastructure in place to support long term human presence and eventual industrialization of the Moon. To make this vision a reality, NASA plans to collaborate with commercial and international partners as much as possible as opposed to developing, building, and operating equipment on its own. Lunar infrastructure will eventually be built over time by many organizations, public and private, to support sustained human exploration, science, and industrial activities. Obviously, this vision for the future will be impossible without a robust lunar communications and navigation system that can support many users with varying degrees of services. On Earth, most people are very familiar with the 3rd Generation Partnership Project (3GPP) 5G mobile telecommunications technology. NASA’s Space Technology Mission Directorate and NASA’s Space Communications and Navigation office would like to see a lunar communications and navigation network with similar capabilities to the cellular communication networks most of us enjoy today. Building such a network will require participation by many organizations. This paper will provide an overview of NASA’s interest in using 5G and beyond on the lunar surface; it will also describe current work based on 3GPP standards within NASA or funded by NASA, such as Nokia’s upcoming Tipping Point demonstration of 4G / LTE on the lunar surface.more » « less