Abstract The Asian summer monsoon (ASM) is teleconnected to the El Niño Southern Oscillation (ENSO), but this relationship is nonstationary and has shifted significantly in recent decades. Characterizing the drivers of such shifts is crucial for improving ASM prediction and extreme event preparedness. Paleoclimate records indicate a link between ASM strength and solar activity on multidecadal‐to‐centennial timescales, but 20th‐century data are too short to test mechanisms. Here we evaluate how solar irradiance influences the ASM‐ENSO relationship using last‐millennium paleoclimate data assimilation reconstructions and model simulations. We find that high solar irradiance weakens the ENSO‐East Asian summer monsoon (EASM) correlation, but strengthens the ENSO‐South Asian summer monsoon (SASM) correlation. Solar irradiance likely influences the strength of the ENSO‐EASM and ENSO‐SASM teleconnections via changes in the Western Pacific Subtropical High and the amplitude of ENSO events, respectively. We suggest a need for considering solar activity in decadal ASM rainfall predictions under global warming scenarios.
more »
« less
Tropical Pacific Modulation of the Asian Summer Monsoon Over the Last Millennium in Paleoclimate Data Assimilation Reconstructions
Abstract Large uncertainties exist in climate model projections of the Asian summer monsoon (ASM). The El Niño‐Southern Oscillation (ENSO) is an important modulator of the ASM, but the ENSO‐ASM teleconnection is not stationary. Furthermore, teleconnections between ENSO and the East Asian versus South Asian subcomponents of the ASM exhibit distinct characteristics. Therefore, understanding the variability of the ENSO‐ASM teleconnection is critical for anticipating future variations in ASM intensity. To this end, we here use paleoclimate records to extend temporal coverage beyond the instrumental era by millennia. Recently, data assimilation techniques have been applied for the last millennium, which facilitates physically consistent, globally gridded climate reconstructions informed by paleoclimate observations. We use these novel data assimilation products to investigate variations in the ENSO‐ASM relationship over the last 1,000 years. We find that correlations between ENSO and ASM indices are mostly negative in the last millennium, suggesting that strong ASM years are often associated with La Niña events. During periods of weak correlations between ENSO and the East Asian summer monsoon, we observe an El Niño‐like sea surface temperature (SST) pattern in the Pacific. Additionally, SST patterns associated with periods of weak correlations between ENSO and South Asian summer monsoon rainfall are not consistent among data assimilation products. This underscores the importance of developing more precipitation‐sensitive paleoclimate proxies in the Indian subcontinental realm over the last millennium. Our study serves as a baseline for future appraisals of paleoclimate assimilation products and an example of informing our understanding of decadal‐scale ENSO‐ASM teleconnection variability using paleoclimate data sets.
more »
« less
- Award ID(s):
- 2102812
- PAR ID:
- 10471001
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 128
- Issue:
- 20
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship.more » « less
-
Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociated with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome.more » « less
-
Abstract Teleconnection rainfall over North America may be systematically altered by tropical Pacific mean state changes. Characterizing teleconnection changes to improve prediction requires many realizations of ENSO events, but twentieth century data are temporally limited. To extend twentieth century records, we evaluate ENSO events in a new last‐millennium paleoclimate data assimilation reconstruction to deduce how mean state changes affect the magnitude/extent of ENSO‐driven rainfall in the United States. Despite global cooling during the Little Ice Age, the central‐eastern tropical Pacific warms relative to the Medieval Climate Anomaly, shifting teleconnections eastward and increasing rainfall anomalies in the southwestern United States. Teleconnections strengthen independently of ENSO amplitude; we thus suggest caution in using paleoclimate reconstructions of teleconnection rainfall as a proxy for ENSO amplitude. We demonstrate teleconnection rainfall is sensitive to the pattern of tropical Pacific mean SST changes, underscoring the importance of reducing uncertainties in future warming patterns in the tropical Pacific.more » « less
-
Asian summer monsoon (ASM) variability significantly affects hydro-climate, and thus socio-economics, in the East Asian region, where nearly one-third of the global population resides. Over the last two decades, speleothem δ18O records from China have been utilized to reconstruct ASM variability and its underlying forcing mechanisms on orbital to seasonal timescales. Here, we use the Speleothem Isotopes Synthesis and Analysis database (SISAL_v1) to present an overview of hydro-climate variability related to the ASM during three periods: the late Pleistocene, the Holocene, and the last two millennia. We highlight the possible global teleconnections and forcing mechanisms of the ASM on different timescales. The longest composite stalagmite δ18O record over the past 640 kyr BP from the region demonstrates that ASM variability on orbital timescales is dominated by the 23 kyr precessional cycles, which are in phase with Northern Hemisphere summer insolation (NHSI). During the last glacial, millennial changes in the intensity of the ASM appear to be controlled by North Atlantic climate and oceanic feedbacks. During the Holocene, changes in ASM intensity were primarily controlled by NHSI. However, the spatio-temporal distribution of monsoon rain belts may vary with changes in ASM intensity on decadal to millennial timescales.more » « less