skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Almost-prime times in horospherical flows on the space of lattices
An integer is called almost-prime if it has fewer than a fixed number of prime factors. In this paper, we study the asymptotic distribution of almost-prime entries in horospherical flows on Gamma\SL(n,R), where Gamma is either SL(n,Z) or a cocompact lattice. In the cocompact case, we obtain a result that implies density for almost-primes in horospherical flows where the number of prime factors is independent of basepoint, and in the space of lattices we show the density of almost-primes in abelian horospherical orbits of points satisfying a certain Diophantine condition. Along the way we give an effective equidistribution result for arbitrary horospherical flows on the space of lattices, as well as an effective rate for the equidistribution of arithmetic progressions in abelian horospherical flows.  more » « less
Award ID(s):
1903099
PAR ID:
10471040
Author(s) / Creator(s):
Publisher / Repository:
American Institute of Mathematical Sciences
Date Published:
Journal Name:
Journal of Modern Dynamics
Volume:
15
Issue:
0
ISSN:
1930-532X
Page Range / eLocation ID:
277 to 327
Subject(s) / Keyword(s):
horospherical flows, horocycle flow, homogeneous dynamics, almost-primes, effective equidistribution, sparse equidistribution, space of lattices
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For finitely generated groups G and H equipped with word metrics, a translation-like action of H on G is a free action where each element of H moves elements of G a bounded distance. Translation-like actions provide a geometric generalization of subgroup containment. Extending work of Cohen, we show that cocompact lattices in a general semisimple Lie group G that is not isogenous to SL(2,ℝ) admit translation-like actions by ℤ2. This result follows from a more general result. Namely, we prove that any cocompact lattice in the unipotent radical N of the Borel subgroup AN of G acts translation-like on any cocompact lattice in G. We also prove that for noncompact simple Lie groups G,H with H 
    more » « less
  2. Abstract Let Γ be a Schottky semigroup in {\mathrm{SL}_{2}(\mathbf{Z})} ,and for {q\in\mathbf{N}} , let {\Gamma(q):=\{\gamma\in\Gamma:\gamma=e~{}(\mathrm{mod}~{}q)\}} be its congruence subsemigroupof level q . Let δ denote the Hausdorff dimension of the limit set of Γ.We prove the following uniform congruence counting theoremwith respect to the family of Euclidean norm balls {B_{R}} in {M_{2}(\mathbf{R})} of radius R :for all positive integer q with no small prime factors, \#(\Gamma(q)\cap B_{R})=c_{\Gamma}\frac{R^{2\delta}}{\#(\mathrm{SL}_{2}(%\mathbf{Z}/q\mathbf{Z}))}+O(q^{C}R^{2\delta-\epsilon}) as {R\to\infty} for some {c_{\Gamma}>0,C>0,\epsilon>0} which are independent of q .Our technique also applies to give a similar counting result for the continued fractions semigroup of {\mathrm{SL}_{2}(\mathbf{Z})} ,which arises in the study of Zaremba’s conjecture on continued fractions. 
    more » « less
  3. We prove a quantitative finiteness theorem for the number of totally geodesic hyperplanes of non-arithmetic hyperbolic n-manifolds that arise from a gluing construction of Gromov and Piatetski-Shapiro for n ≥ 3. This extends work of LindenstraussMohammadi in dimension 3. This follows from effective density theorem for periodic orbits of SO(n −1,1) acting on quotients of SO(n,1) by a lattice for n ≥ 3. The effective density result uses a number of a ideas including Margulis functions, a restricted projection theorem, and an effective equidistribution result for measures on the horospherical subgroup that are nearly full dimensional. 
    more » « less
  4. Abstarct Given disjoint subsets T 1 , …, T m of “not too large” primes up to x , we establish that for a random integer n drawn from [1, x ], the m -dimensional vector enumerating the number of prime factors of n from T 1 , …, T m converges to a vector of m independent Poisson random variables. We give a specific rate of convergence using the Kubilius model of prime factors. We also show a universal upper bound of Poisson type when T 1 , …, T m are unrestricted, and apply this to the distribution of the number of prime factors from a set T conditional on n having k total prime factors. 
    more » « less
  5. Abstract Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either $$X_{\overline {K}}$$ has infinitely many rational curves or X has infinitely many unirational specialisations. Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K . 
    more » « less