skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Where Are Sodium Ions in AOT Reverse Micelles? Fluoride Anion Probes Nanoconfined Ions by 19F Nuclear Magnetic Resonance Spectroscopy
Confining water to nanosized spaces creates a unique environment that can change water's structural and dynamic properties. When ions are present in these nanoscopic spaces, the limited number of water molecules and short screening length can dramatically affect how ions are distributed compared to the homogeneous distribution assumed in bulk aqueous solution. Here, we demonstrate that the chemical shift observed in 19F NMR spectroscopy of fluoride anion, F, probes the location of sodium ions, Na+, confined in reverse micelles prepared from AOT (sodium dioctylsulfosuccinate) surfactants. Our measurements show that the nanoconfined environment of reverse micelles can lead to extremely high apparent ion concentrations and ionic strength, beyond the limit in bulk aqueous solutions. Most notably, the 19F NMR chemical shift trends we observe for F in the reverse micelles indicate that the AOT sodium counterions remain at or near the interior interface between surfactant and water, thus providing the first experimental support for this hypothesis  more » « less
Award ID(s):
1956323
PAR ID:
10471078
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Langmuir
Volume:
39
Issue:
22
ISSN:
0743-7463
Page Range / eLocation ID:
7811 to 7819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AOT reverse micelles are a common and convenient model system for studying the effects of nanoconfinement on aqueous solutions. The reverse micelle shape is important to understanding how the constituent components come together to form the coherent whole and the unique properties observed there. The shape of reverse micelles impacts the amount of interface present and the distance of the solute from the interface and is therefore vital to understanding interfacial properties and the behavior of solutes in the polar core. In this work, we use previously introduced measures of shape, the coordinate-pair eccentricity (CPE) and convexity, and apply them to a series of simulations of AOT reverse micelles. We simulate the most commonly used force field for AOT reverse micelles, the CHARMM force field, but we also adapt the OPLS force field for use with AOT, the first work to do so, in addition to using both 3- and 4-site water models. Altogether, these simulations are designed to examine the impact of the force field on the shape of the reverse micelles in detail. We also study the time autocorrelation of shape, the water rotational anisotropy decay, and how the CPE changes between the water pool and AOT tail groups. We find that although the force field changes the shape noticeably, AOT reverse micelles are always amorphous particles. The shape of the micelles changes on the order of 10 ns. The water rotational dynamics observed match the experiment and demonstrate slower dynamics relative to bulk water, suggesting a two-population model that fits a core/shell hypothesis. Taken together, our results indicate that it is likely not possible to create a perfect force field that can reproduce every aspect of the AOT reverse micelle accurately. However, the magnitude of the differences between simulations appears relatively small, suggesting that any reasonably derived force field should provide an acceptable model for most work on AOT reverse micelles. 
    more » « less
  2. Abstract 19F magnetic resonance (MR) based detection coupled with well‐designed inorganic systems shows promise in biological investigations. Two proof‐of‐concept inorganic probes that exploit a novel mechanism for19F MR sensing based on converting from low‐spin (S=0) to high‐spin (S=1) Ni2+are reported. Activation of diamagneticNiL1andNiL2by light or β‐galactosidase, respectively, converts them into paramagneticNiL0, which displays a single19F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin‐state switch is effective for sensing light or enzyme expression in live cells using19F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for19F MR based biosensing. 
    more » « less
  3. Abstract 19F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS)19F solid‐state NMR spectroscopy in assemblies of HIV‐1 capsid protein. Tryptophan residues with fluorine substitution at the 5‐position of the indole ring were used as the reporters. The19F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin‐diffusion and radio‐frequency‐driven‐recoupling experiments were performed at MAS frequencies of 35 kHz and 40–60 kHz, respectively. Fast MAS frequencies of 40–60 kHz are essential for consistently establishing19F–19F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS19F NMR spectroscopy for structural analysis in large biological assemblies. 
    more » « less
  4. Abstract Studies of protein structure and dynamics are usually carried out in dilute buffer solutions, conditions that differ significantly from the crowded environment in the cell. The double electron‐electron resonance (DEER) technique can track proteins’ conformations in the cell by providing distance distributions between two attached spin labels. This technique, however, cannot access distances below 1.8 nm. Here, we show that GdIII19F Mims electron‐nuclear double resonance (ENDOR) measurements can cover part of this short range. Low temperature solution and in‐cell ENDOR measurements, complemented with room temperature solution and in‐cell GdIII19F PRE (paramagnetic relaxation enhancement) NMR measurements, were performed on fluorinated GB1 and ubiquitin (Ub), spin‐labeled with rigid GdIIItags. The proteins were delivered into human cells via electroporation. The solution and in‐cell derived GdIII19F distances were essentially identical and lie in the 1–1.5 nm range revealing that both, GB1 and Ub, retained their overall structure in the GdIIIand19F regions in the cell. 
    more » « less
  5. The formation of lead carboxylates (lead soaps) has been identified as the cause of deterioration of hundreds of oil paintings. Soaps form when heavy metal-containing pigments, for example lead white and lead-tin yellow, react with saturated fatty acids in the oil medium. Understanding the mechanism of the reactions requires chemical information, which can be obtained with solid-state 207Pb, 119Sn and 13C NMR spectroscopy. Using the chemical-shift tensors determined by solid-state NMR we can gain structural insights on the coordination environment of the lead carboxylates and identify and quantify components in a paint film mixture. We have examined the spectroscopy of lead-containing pigments, lead carboxylates, and model paint films that were subjected to accelerated aging. We have also begun to investigate the dynamics of soap formation by 13C NMR spectroscopy. The NMR methods applied to the model paint systems could also be applied to other lead-containing materials. 
    more » « less