skip to main content


Title: Increased Terrestrial Carbon Export and CO 2 Evasion From Global Inland Waters Since the Preindustrial Era
Abstract

Global carbon dioxide (CO2) evasion from inland waters (rivers, lakes, and reservoirs) and carbon (C) export from land to oceans constitute critical terms in the global C budget. However, the magnitudes, spatiotemporal patterns, and underlying mechanisms of these fluxes are poorly constrained. Here, we used a coupled terrestrial–aquatic model to assess how multiple changes in climate, land use, atmospheric CO2concentration, nitrogen (N) deposition, N fertilizer and manure applications have affected global CO2evasion and riverine C export along the terrestrial‐aquatic continuum. We estimate that terrestrial C loadings, riverine C export, and CO2evasion in the preindustrial period (1800s) were 1,820 ± 507 (mean ± standard deviation), 765 ± 132, and 841 ± 190 Tg C yr−1, respectively. During 1800–2019, multifactorial global changes caused an increase of 25% (461 Tg C yr−1) in terrestrial C loadings, reaching 2,281 Tg C yr−1in the 2010s, with 23% (104 Tg C yr−1) of this increase exported to the ocean and 59% (273 Tg C yr−1) being emitted to the atmosphere. Our results showed that global inland water recycles and exports nearly half of the net land C sink into the atmosphere and oceans, highlighting the important role of inland waters in the global C balance, an amount that should be taken into account in future C budgets. Our analysis supports the view that a major feature of the global C cycle–the transfer from land to ocean–has undergone a dramatic change over the last two centuries as a result of human activities.

 
more » « less
NSF-PAR ID:
10471145
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
37
Issue:
10
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The evasion of CO2from inland waters, a major carbon source to the atmosphere, depends on dissolved inorganic carbon (DIC) concentrations. Our understanding of DIC dynamics across gradients of climate, geology, and vegetation conditions however have remained elusive. To understand its large‐scale patterns and drivers, we collated instantaneous and mean (multiyear average) DIC concentrations from about 100 rivers draining minimally‐impacted watersheds in the contiguous United States. Within individual sites, instantaneous concentrations (C) measured at daily to seasonal scales exhibit a near‐universal response to changes in river discharge (Q) in a negative power law form. High concentrations occur at low discharge when DIC‐enriched groundwater dominates river discharge; low concentrations occur under high flow when relatively DIC‐poor shallow soil water predominates river discharge. Such patterns echo the widely observed increase of soil CO2and DIC with depth and the shallow‐and‐deep hypothesis that emphasizes the importance of flow paths and source water chemistry. Across sites, mean concentrations (Cm) decrease with increasing mean discharge (Qm), a long‐term climate measure, and reachs maxima at around 200 mm/yr. A parsimonious model reveals that high mean DIC arises from soil CO2accumulation when rates of DIC‐generating reactions are relatively high compared to its export fluxes in arid climates. Although instantaneous and mean DIC concentrations similarly decrease with increasing discharge, results here highlight their distinct drivers: daily to seasonal‐scale instantaneous concentration variations (C) are controlled by subsurface CO2distribution over depth (from below), whereas long‐term mean concentrations (Cm) are regulated by climate (from above). The results emphasize the significance of land‐river connectivity via subsurface flow paths. They also underscore the importance of characterizing subsurface CO2distribution to illuminate belowground processes in order to project the future of water and carbon cycles in a warming climate.

     
    more » « less
  2. Abstract

    Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the second phase of the REgional Carbon Cycle Assessment and Processes (RECCAP‐2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. We then produce regionalized estimates of GHG emissions over 10 extensive land regions. According to our synthesis, inland water GHG emissions have a global warming potential of an equivalent emission of 13.5 (9.9–20.1) and 8.3 (5.7–12.7) Pg CO2‐eq. yr−1at a 20 and 100 years horizon (GWP20and GWP100), respectively. Contributions of CO2dominate GWP100, with rivers being the largest emitter. For GWP20, lakes and rivers are equally important emitters, and the warming potential of CH4is more important than that of CO2. Contributions from N2O are about two orders of magnitude lower. Normalized to the area of RECCAP‐2 regions, S‐America and SE‐Asia show the highest emission rates, dominated by riverine CO2emissions.

     
    more » « less
  3. Abstract

    Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4emissions with process-based modeling estimates of land CO2, N2O and CH4fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2sink. We also found large grassland-specific variations in net GHG fluxes, withpasturelandsacting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1(mean ± 1.0 s.d.) andrangelandsa strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.

     
    more » « less
  4. Abstract Background

    China’s terrestrial ecosystems play a pronounced role in the global carbon cycle. Here we combine spatially-explicit information on vegetation, soil, topography, climate and land use change with a process-based biogeochemistry model to quantify the responses of terrestrial carbon cycle in China during the 20th century.

    Results

    At a century scale, China’s terrestrial ecosystems have acted as a carbon sink averaging at 96 Tg C yr− 1, with large inter-annual and decadal variabilities. The regional sink has been enhanced due to the rising temperature and CO2concentration, with a slight increase trend in carbon sink strength along with the enhanced net primary production in the century. The areas characterized by C source are simulated to extend in the west and north of the Hu Huanyong line, while the eastern and southern regions increase their area and intensity of C sink, particularly in the late 20th century. Forest ecosystems dominate the C sink in China and are responsible for about 64% of the total sink. On the century scale, the increase in carbon sinks in China’s terrestrial ecosystems is mainly contributed by rising CO2. Afforestation and reforestation promote an increase in terrestrial carbon uptake in China from 1950s. Although climate change has generally contributed to the increase of carbon sinks in terrestrial ecosystems in China, the positive effect of climate change has been diminishing in the last decades of the 20th century.

    Conclusion

    This study focuses on the impacts of climate, CO2and land use change on the carbon cycle, and presents the potential trends of terrestrial ecosystem carbon balance in China at a century scale. While a slight increase in carbon sink strength benefits from the enhanced vegetation carbon uptake in China’s terrestrial ecosystems during the 20th century, the increase trend may diminish or even change to a decrease trend under future climate change.

     
    more » « less
  5. Abstract

    Multiyear estimates of organic matter (OM) export based primarily on oxygen and dissolved inorganic carbon surface layer budgets applied basin‐wide for the Pacific, Atlantic, and S. Indian Oceans yield an inter‐basin range from 1 to 3 mol C/m2/yr with a global mean of 2.0 mol C/m2/yr (8.5 Gt C/yr). OM export rates per area in the Pacific and Atlantic oceans are twice than that in the Indian Ocean. The supply of nutrients from the Southern Ocean can potentially support ∼70% of the observed OM export in the ocean based on observed surface current velocities and PO4distributions. Horizontal flux of PO4and dissolved organic phosphorous in the surface layer can support ∼50%, 20%, and 15% of observed OM export in the Pacific, S. Indian and Atlantic oceans, respectively, with the remainder being supplied vertically from the subsurface. Potential utilization of unused surface PO4in the subtropical gyre yields ∼0.1 mol C/m2/yr increase in OM export in the Pacific and Atlantic oceans but a ∼0.8 mol C/m2/yr increase in the S. Indian ocean suggesting that stronger nutrient limitation contributes to lower export rates observed in the Indian ocean.

     
    more » « less