skip to main content


Title: VoroNoodles: Topological Interlocking with Helical Layered 2‐Honeycombs

An approach for modeling topologically interlocked building blocks that can be assembled in a water‐tight manner (space filling) to design a variety of spatial structures is introduced. This approach takes inspiration from recent methods utilizing Voronoi tessellation of spatial domains using symmetrically arranged Voronoi sites. Attention is focused on building blocks that result from helical stacking of planar 2‐honeycombs (i.e., tessellations of the plane with a single prototile) generated through a combination of wallpaper symmetries and Voronoi tessellation. This unique combination gives rise to structures that are both space‐filling (due to Voronoi tessellation) and interlocking (due to helical trajectories). Algorithms are developed to generate two different varieties of helical building blocks, namely, corrugated and smooth. These varieties result naturally from the method of discretization and shape generation and lead to distinct interlocking behavior. In order to study these varieties, finite‐element analyses (FEA) are conducted on different tiles parametrized by 1) the polygonal unit cell determined by the wallpaper symmetry and 2) the parameters of the helical line generating the Voronoi tessellation. Analyses reveal that the new design of the geometry of the building blocks enables strong variation of the engagement force between the blocks.

 
more » « less
NSF-PAR ID:
10471177
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
26
Issue:
4
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we introduce an approach to model topologically interlocked corrugated bricks that can be assembled in a water-tight manner (space-filling) to design a variety of spatial structures. Our approach takes inspiration from recently developed methods that utilize Voronoi tessellation of spatial domains by using symmetrically arranged Voronoi sites. However, in contrast to these existing methods, we focus our attention on Voronoi sites modeled using helical trajectories, which can provide corrugation and better interlocking. For symmetries, we only use affine transformations based on the Bravais lattice to avoid self-intersections. This methodology naturally results in structures that are both space-filling (owing to Voronoi tessellation) as well as interlocking by corrugation (owing to helical trajectories). The resulting shapes of the bricks appear to be similar to a variety of pasta noodles, thereby inspiring the names, Voronoi Spaghetti and VoroNoodles. 
    more » « less
  2. Topologically interlocked materials (TIMs) are material systems consisting of one or more repeating unit blocks assembled in a planar configuration such that each block is fully constrained geometrically by its neighbours. The assembly is terminated by a frame that constrains the outermost blocks. The resulting plate-like structure does not use any type of adhesive or fastener between blocks but is capable of carrying transverse loads. These material systems are advantageous due to their potential attractive combination of strength, toughness, and damage tolerance as compared to monolithic plates, especially when using lower strength materials. TIMs are damage tolerant due to the fact that cracks in any single block cannot propagate to neighbouring blocks. Many configurations of TIMs have been conceptualized in the past, particularly in architecture, but less work has been done to understand the mechanics of such varied assembly architectures. This work seeks to expand our knowledge of how TIM architecture is related to TIM mechanics. The present study considers TIMs created from the Archimedean and Laves tessellations. Each tessellation is configured as a TIM by projecting each edge of a tile at alternating angles from the normal to the tiling plane. For each tiling, multiple symmetries exist depending on where the frame is placed relative to the tiling. Six unique tilings and their multiple symmetries and load directions were considered, resulting in 19 unique TIM configurations. All TIM configurations were realized with identical equivalent overall assembly dimensions. The radius of the inscribed circle of the square and hexagon frames were the same, as well as the thickness of the assemblies. The tilings were scaled to possess the similar same number of building blocks within the frame. Finite element models were created for each configuration and subjected to two load types under quasi-static conditions: a prescribed displacement applied at the center of the assembly, and by a gravity load. The force deflection response of all TIM structures was found to be similar to that of a Mises truss, comprised of an initial positive stiffness followed by a period of negative stiffness until failure of the assembly. This response is indeed related to the internal working of load transfer in TIMs. Owing to the granular type character of the TIM assembly, the stress distribution follows a force-network. The key findings of this study are: • The load transfer in TIMs follows from force networks and the geometry of the force network is associated with the dual tessellation of the respective TIM system. • In TIMs based on Laves tessellations (centered around a vertex of the tiling rather than the center of a tile), displayed chirality and exerted a moment normal to the tile plane as they were loaded. • TIMs resulting from tessellations with more than one unique tile, such as squares and octagons, are asymmetric along the normal to the tile plane causing a dependence of the load response to the direction of the transverse load. Work is underway to transform these findings into general rules allowing for a predictive relationship between material architecture and mechanical response of TIM systems. This material is based upon work supported by the National Science Foundation under Grant No. 1662177. 
    more » « less
  3. The recent development of three-dimensional graphic statics (3DGS) has greatly increased the ease of designing complex and efficient spatial funicular structural forms [1]. The reciprocal diagram based 3DGS approaches not only generate highly efficient funicular structures [2], but also result in planarity constraints due to the polyhedron nature of the reciprocal diagrams [3]. Our previous research has shown the feasibility of leveraging this planarity by using planar glass sheets to materialize the 10m-span, double-layer glass bridge [3]. This paper is framed as a proof of concept for the 10m bridge and explores the form-finding, detail configuration, fabrication constraints, and assembly logic by designing and constructing a small-scale bridge prototype with a span of 2.5m. The prototype is designed in a modular approach, where each polyhedral cell of the form is materialized using a hollow glass unit (HGU) (Figure 1a), which can be prefabricated and preassembled, and therefore, greatly simplifies the assembly of the whole bridge. The compression-only form of the prototype is generated using the PolyFrame beta [4] plug-in for Rhinoceros [5]. The form-finding is carried out with a comprehensive consideration of a variety of parameters, including fabrication constraints, assembly ease, construction cost, and practicality. To start the form-finding process, a group of closed convex force polyhedrons is aggregated, controlling the topology of the form diagram and the orientations of the form elements. By manipulating the face tilting angles of the force diagram, the supported edges at the end of the bridge are all made horizontal, reducing the difficulty of the support design. Then, vertex locations and edge lengths of the form diagram are constrained, determining the final dimensions of both the bridge and the cells. After getting the geometry of the bridge, the detail developments are streamlined. Each of the 13 HGUs consists of two flat deck plates and a series of side plates (Figure 1b). To interlock the adjacent cells and prevent possible sliding, a male-female connection mechanism is introduced to the conjoint side plates of the HGUs (Figure 1b). Additionally, to eliminate the direct contact of the glass parts and prevent the stress concentration, two softer transparent materials are involved for connecting purposes. Within each HGU, silicon-based binding agent is used to hold the glass parts together; between the neighboring HGUs, plastic sheets are placed as interface materials (Figure 1b). Figure 1. a) The 2.5m-span small-scale prototype dome, b) Exploded view showing deck plates, side plates, male-female connection, and interface material For the fabrication of the glass parts, 5-axis Waterjet cutting techniques are applied. While the glass sheets for the deck plates can be purchased from the market, the irregular side plates with male-female connections need to be made from kiln-cast glass. In terms of the Waterjet cutting constraints, there is a max cutting angle of 60 degrees from vertical. With respect to this, all the glass parts are examined during the design process to ensure they all satisfy the cutting angle requirements. Aiming to achieve a fast and precise assembly, several assistant techniques are developed. On the local HGU level, assembly connectors are designed and 3D-printed to help locate the glass parts. On the global prototype level, the assembly sequence of the HGUs are simulated to avoid interference. Besides, a labeling system is also established to organize the fabricated parts and guide the entire assembly process. The design and construction of this small-scale prototype provide important information for the future development of the full-scale bridge regarding the interlocking detail design, the fabrication constraints, and assembly logic. The actual structural performance of the prototype awaits further investigation through-loading experiments. 
    more » « less
  4. This paper describes the fabrication and assembly of tessellated precast reinforced concrete shear walls. These walls are being constructed and tested as part of an NSF-funded research project designed to demonstrate the concept of Tessellated Structural-Architectural (TeSA) systems. The over-arching goal of this research is to explore tessellation patterns that can be implemented on a large scale, are architecturally appealing, and provide structural function. TeSA systems are comprised of individual tiles arranged in tessellations, or repeating geometric patterns. Tiles are topologically interlocking, which means that they transfer forces due to their interlocking geometry rather than through a bonding adhesive. The benefit of such a system is the ability to localize failure and rapidly repair the individual damaged tiles, rather than the entire system. The specimen discussed in this paper is a precast concrete shear wall constructed from individually cast I-shaped tiles. Shear wall tests are forthcoming; this paper focuses instead on documenting technical solutions to difficulties faced during design, fabrication, and assembly of the test specimen. This paper is intended to provide lessons learned to others who are designing and building TeSA walls and thereby facilitate the benefits of these novel systems. 
    more » « less
  5. This paper describes the fabrication and assembly of tessellated precast reinforced concrete shear walls. These walls are being constructed and tested as part of an NSF-funded research project designed to demonstrate the concept of Tessellated Structural-Architectural (TeSA) systems. The over-arching goal of this research is to explore tessellation patterns that can be implemented on a large scale, are architecturally appealing, and provide structural function. TeSA systems are comprised of individual tiles arranged in tessellations, or repeating geometric patterns. Tiles are topologically interlocking, which means that they transfer forces due to their interlocking geometry rather than through a bonding adhesive. The benefit of such a system is the ability to localize failure and rapidly repair the individual damaged tiles, rather than the entire system. The specimen discussed in this paper is a precast concrete shear wall constructed from individually cast I-shaped tiles. Shear wall tests are forthcoming; this paper focuses instead on documenting technical solutions to difficulties faced during design, fabrication, and assembly of the test specimen. This paper is intended to provide lessons learned to others who are designing and building TeSA walls and thereby facilitate the benefits of these novel systems. 
    more » « less