Abstract Supramolecular chirality typically originates from either chiral molecular building blocks or external chiral stimuli. Generating chirality in achiral systems in the absence of a chiral input, however, is non-trivial and necessitates spontaneous mirror symmetry breaking. Achiral nematic lyotropic chromonic liquid crystals have been reported to break mirror symmetry under strong surface or geometric constraints. Here we describe a previously unrecognised mechanism for creating chiral structures by subjecting the material to a pressure-driven flow in a microfluidic cell. The chirality arises from a periodic double-twist configuration of the liquid crystal and manifests as a striking stripe pattern. We show that the mirror symmetry breaking is triggered at regions of flow-induced biaxial-splay configurations of the director field, which are unstable to small perturbations and evolve into lower energy structures. The simplicity of this unique pathway to mirror symmetry breaking can shed light on the requirements for forming macroscopic chiral structures.
more »
« less
Switching Chirality in Arrays of Shape‐Reconfigurable Spindle Microparticles
Abstract The giant circular photo‐galvanic effect is realized in chiral metals when illuminated by circularly polarized light. However, the structure itself is not switchable nor is the crystal chirality in the adjacent chiral domains. Here spindle‐shaped liquid crystalline elastomer microparticles that can switch from prolate to spherical to oblate reversibly upon heating above the nematic to isotropic transition temperature are synthesized. When arranged in a honeycomb lattice, the continuous shape change of the microparticles leads to lattice reconfiguration, from a right‐handed chiral state to an achiral one, then to a left‐handed chiral state, without breaking the translational symmetry. Accordingly, the sign of rotation of the polarized light passing through the lattices changes as measured by time‐domain terahertz spectroscopy. Further, it can locally alter the chirality in the adjacent domains using near‐infrared light illumination. The reconfigurable chiral microarrays will allow us to explore non‐trivial symmetry‐protected transport modes of topological lattices at the light–matter interface. Specifically, the ability to controllably create chiral states at the boundary of the achiral/chiral domains will lead to rich structures emerging from the interplay of symmetry and topology.
more »
« less
- PAR ID:
- 10471395
- Publisher / Repository:
- Advanced Materials
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 35
- Issue:
- 31
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ferroelectric nematic liquid crystals are formed by achiral molecules with large dipole moments. Their three-dimensional orientational order is described as unidirectionally polar. We demonstrate that the ground state of a flat slab of a ferroelectric nematic unconstrained by externally imposed alignment directions is chiral, with left- and right-handed twists of polarization. Although the helicoidal deformations and defect walls that separate domains of opposite handedness increase the elastic energy, the twists reduce the electrostatic energy and become weaker when the material is doped with ions. This work shows that the polar orientational order of molecules could trigger chirality in soft matter with no chemically induced chiral centers.more » « less
-
Supramolecular chirality typically originates from either chiral molecular building blocks or external chiral stimuli. Generating chirality in achiral systems in the absence of a chiral input, however, is non-trivial and necessitates spontaneous mirror symmetry breaking. Achiral nematic lyotropic chromonic liquid crystals have been reported to break mirror symmetry under strong surface or geometric constraints. Here we describe a previously unrecognised mechanism for creating chiral structures by subjecting the material to a pressure-driven flow in a microfluidic cell. The chirality arises from a periodic double-twist configuration of the liquid crystal and manifests as a striking stripe pattern. We show that the mirror symmetry breaking is triggered at regions of flow-induced biaxial-splay configurations of the director field, which are unstable to small perturbations and evolve into lower energy structures. The simplicity of this unique pathway to mirror symmetry breaking can shed light on the requirements for forming macroscopic chiral structures.more » « less
-
Chirality is a geometric property describing the lack of mirror symmetry. This unique feature enables photonic spin-selectivity in light–matter interaction, which is of great significance in stereochemistry, drug development, quantum optics, and optical polarization control. The versatile control of optical geometry renders optical metamaterials as an effective platform for engineered chiral properties at prescribed spectral regimes. Unfortunately, geometry-imposed restrictions only allow one circular polarization state of photons to effectively interact with chiral meta-structures. This limitation motivates the idea of discovering alternative techniques for dynamically reconfiguring the chiroptical responses of metamaterials in a fast and facile manner. Here, we demonstrate an approach that enables optical, sub-picosecond conversion of achiral meta-structures to transient chiral media in the visible regime with desired handedness upon the inhomogeneous generation of plasmonic hot electrons. As a proof of concept, we utilize linearly polarized laser pulse to demonstrate near-complete conversion of spin sensitivity in an achiral meta-platform—a functionality yet achieved in a non-mechanical fashion. Owing to the generation, diffusion, and relaxation dynamics of hot electrons, the demonstrated technique for all-optical creation of chirality is inherently fast, opening new avenues for ultrafast spectro-temporal construction of chiral platforms with on-demand spin-selectivity.more » « less
-
Chiral organosilica particles of size ~200 nm were synthesized from an enantio-pure multi-armed chiral D-maltose organosilane precursor in the absence of co-condensation with an achiral monomer. Two distinct experiments were performed to demonstrate the particles’ ability to induce conformational deracemization of a host liquid crystal. The first involves an electric field-induced tilt of the liquid crystal director in the deracemized smectic-A phase. The other involves domain wall curvature separating left- and right-handed liquid crystal helical pitch domains imposed by the cells’ substrates. The results demonstrate unequivocally that enantio-pure organosilica nanoparticles can be synthesized and can induce chirality in a host.more » « less