skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Poetry writing to enhance conceptual understanding of mathematical models and approaches for inventory management
To enhance conceptual understanding of mathematical models for inventory management, we developed poetry-writing assignments for a required, upper-level undergraduate course in an industrial and systems engineering program. Specifically, two poetry-writing assignments were incorporated into an inventory and supply chain system design and control course. The first assignment, due one week before the first term exam, asked students to write a poem about a concept, model or topic related to deterministic inventory modeling. The second and assignment, due one week before the second term exam, asked the students to write a poem about a concept, model or topic related to stochastic inventory modeling. The students were also asked to respond to several open-ended questions on their approach to writing the poems and their assessment of the impact of these poetry writing on improving their conceptual understanding of the underlying mathematical models. Data was collected in Spring 2022 semester. The student written-poetry will be analyzed for correctness and to identify misunderstandings or gaps in understanding. In this paper, we will present our findings from the content analysis of student-written poetry and our preliminary findings on the effectiveness of poetry-writing assignments to enhance conceptual understanding of mathematical models for inventory management.  more » « less
Award ID(s):
2215133
PAR ID:
10471455
Author(s) / Creator(s):
; ;
Publisher / Repository:
https://peer.asee.org
Date Published:
Journal Name:
2023 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Location:
https://peer.asee.org/43986
Sponsoring Org:
National Science Foundation
More Like this
  1. Most engineering students are rarely assigned creative tasks to think abstractly around mathematical models, other than being asked to apply theory to real-world scenarios. Challenging the traditional pedagogy, students enrolled in inventory and supply chain system design and control, an upper-level industrial and systems engineering course, were asked to complete two poems throughout the semester-long course. The students were asked to construct poems around a concept, model, or topic covered in the course: the first poem was focused on deterministic inventory modeling and the second poem was focused on stochastic inventory modeling. At the end of the semester, students completed a lookback survey asking several open-ended questions detailing their experience and attitude towards these creative writing assignments. Data was collected during the semesters Fall 2022 and Spring 2023 and of the 84 total students over the two semesters, 64 consented to participate in the study. The student responses to reflection prompts and student-written poems were analyzed to understand how engineering students approached this creative writing assignment, what type of creative processes they utilized to complete these assignments, and how these assignments contributed to their learning. To this end, the student responses to reflection prompts were analyzed to identify the intrinsic and extrinsic motivations as well as to elicit the steps of their processes toward completing these assignments. A sample of of student-written poems were examined in detail to assess their technical accuracy as well. In this paper, we will present our findings on why students pick specific topics for their poems and how their reasons for choosing topics influence their effort in their writing as well as the technical accuracy of their poems. 
    more » « less
  2. East, Martin; Slomp, David (Ed.)
    Studies examining peer review demonstrate that students can learn from giving feedback to and receiving feedback from their peers, especially when they utilize information gained from the review process to revise. However, much of the research on peer review is situated within the literature regarding how students learn to write. With an increasing use of writing-to-learn in STEM classrooms, it is important to study how students engage in peer review for these types of writing assignments. This study sought to better understand how peer review and revision can support student learning for writing-to-learn specifically, using the lenses of cognitive perspectives of writing and engagement with written corrective feedback. Using a case study approach, we provide a detailed analysis of six students’ written artifacts in response to a writing-to-learn assignment that incorporated peer review and revision implemented in an organic chemistry course. Students demonstrated a range in the types of revisions they made and the extent to which the peer review process informed their revisions. Additionally, students exhibited surface, midlevel, and active engagement with the peer review and revision process. Considering the different engagement levels can inform how we frame peer review to students when using it as an instructional practice. 
    more » « less
  3. In technical writing, certain statements must be written very carefully in order to clearly and precisely communicate an idea. Students are often asked to write these statements in response to an open- ended prompt, making them difficult to auto-grade with traditional methods. We present what we believe to be a novel approach for auto-grading these statements by restricting students’ submissions to a pre-defined context-free grammar (configured by the instructor). In addition, our tool provides instantaneous feedback that helps students improve their writing, and it scaffolds the process of constructing a statement by reducing the number of choices students have to make compared to free-form writing. We evaluated our tool by deploying it on an assignment in an undergraduate algorithms course. The assignment contained five questions that used the tool, preceded by a pre-test and followed by a post-test. We observed a statistically significant improvement from the pre-test to the post-test, with the mean score increasing from 7.2/12 to 9.2/12. 
    more » « less
  4. Computer-based testing is a powerful tool for scaling exams in large lecture classes. The decision to adopt computer-based testing is typically framed as a tradeoff in terms of time; time saved by auto-grading is reallocated as time spent developing problem pools, but with significant time savings. This paper seeks to examine the tradeoff in terms of accuracy in measuring student understanding. While some exams (e.g., multiple choice) are readily portable to a computer-based format, adequately porting other exam types (e.g., drawings like FBDs or worked problems) can be challenging. A key component of this challenge is to ask “What is the exam actually able to measure?” In this paper the authors will provide a quantitative and qualitative analysis of student understanding measurements via computer-based testing in a sophomore level Solid Mechanics course. At Michigan State University, Solid Mechanics is taught using the SMART methodology. SMART stands for Supported Mastery Assessment through Repeated Testing. In a typical semester, students are given 5 exams that test their understanding of the material. Each exam is graded using the SMART rubric which awards full points for the correct answer, some percentage for non-conceptual errors, and zero points for a solution that has a conceptual error. Every exam is divided into four sections; concept, simple, average, and challenge. Each exam has at least one retake opportunity, for a total of 10 written tests. In the current study, students representing 10% of the class took half of each exam in Prairie Learn, a computer-based auto-grading platform. During this exam, students were given instant feedback on submitted answers (correct or incorrect) and given an opportunity to identify their mistakes and resubmit their work. Students were provided with scratch paper to set up the problem and work out solutions. After the exam, the paper-based work was compared with the computer submitted answers. This paper examines what types of mistakes (conceptual and non-conceptual) students were able to correct when feedback was provided. The answer is dependent on the type and difficulty of the problem. The analysis also examines whether students taking the computer-based test performed at the same level as their peers who took the paper-based exams. Additionally, student feedback is provided and discussed. 
    more » « less
  5. This work in progress paper describes ongoing work to understand the ways in which students make use of manipulatives to develop their representational competence and deepen their conceptual understanding of course content. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. Several hands-on activities for engineering statics have been designed and implemented in face-to-face courses since fall 2016. In the transition to online learning in response to the COVID 19 pandemic, modeling kits were sent home to students so they could work on the activities at their own pace and complete the associated worksheets. An assignment following the vector activities required students to create videotaped or written reflections with annotated pictures using the models to explain their thinking around key concepts. Students made connections between abstract symbolic representations and their physical models to explain concepts such as a general 3D unit vector, the difference between spherical coordinate angles and coordinate direction angles, and the meaning of decomposing a vector into components perpendicular and parallel to a line. Thematic analysis of the video and written data was used to develop codes and identify themes in students’ use of the models as it relates to developing representational competence. The student submissions also informed the design of think-aloud exercises in one-on-one semi-structured interviews between researchers and students that are currently in progress. This paper presents initial work analyzing and discussing themes that emerged from the initial video and written analysis and plans for the subsequent think-aloud interviews, all focused on the specific attributes of the models that students use to make sense of course concepts. The ultimate goal of this work is to develop some general guidelines for the design of manipulatives to support student learning in a variety of STEM topics. 
    more » « less