skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable cryopreservation of infectious Cryptosporidium hominis oocysts by vitrification
Cryptosporidium hominisis a serious cause of childhood diarrhea in developing countries. The development of therapeutics is impeded by major technical roadblocks including lack of cryopreservation and simple culturing methods. This impacts the availability of optimized/standardized singular sources of infectious parasite oocysts for research and human challenge studies. The humanC.hominisTU502 isolate is currently propagated in gnotobiotic piglets in only one laboratory, which limits access to oocysts. Streamlined cryopreservation could enable creation of a biobank to serve as an oocyst source for research and distribution to other investigators requiringC.hominis. Here, we report cryopreservation ofC.hominisTU502 oocysts by vitrification using specially designed specimen containers scaled to 100 μL volume. Thawed oocysts exhibit ~70% viability with robust excystation and 100% infection rate in gnotobiotic piglets. The availability of optimized/standardized sources of oocysts may streamline drug and vaccine evaluation by enabling wider access to biological specimens.  more » « less
Award ID(s):
1941543
PAR ID:
10471506
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Striepen, Boris
Publisher / Repository:
NSF
Date Published:
Journal Name:
PLOS Pathogens
Volume:
19
Issue:
6
ISSN:
1553-7374
Page Range / eLocation ID:
e1011425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of a widely adopted cryopreservation method remains a major challenge inDrosophilaresearch. Here we report a robust and easily implemented cryopreservation protocol ofDrosophila melanogasterembryos. We present innovations for embryo permeabilization, cryoprotectant agent loading, and rewarming. We show that the protocol is broadly applicable, successfully implemented in 25 distinct strains from different sources. We demonstrate that for most strains, >50% embryos hatch and >25% of the resulting larvae develop into adults after cryopreservation. We determine that survival can be significantly improved by outcrossing to mitigate the effect of genetic background for strains with low survival after cryopreservation. We show that flies retain normal sex ratio, fertility, and original mutation after successive cryopreservation of 5 generations and 6-month storage in liquid nitrogen. Lastly, we find that non-specialists are able to use this protocol to obtain consistent results, demonstrating potential for wide adoption. 
    more » « less
  2. Abstract Cryopreservation by vitrification has far-reaching implications. However, rewarming techniques that are rapid and scalable (both in throughput and biosystem size) for low concentrations of cryoprotective agent (CPA) for reduced toxicity are lacking, limiting the potential for translation. Here, we introduce a joule heating–based platform technology, whereby biosystems are rapidly rewarmed by contact with an electrical conductor that is fed a voltage pulse. We demonstrate successful cryopreservation of three model biosystems with thicknesses across three orders of magnitude, including adherent cells (~4 µm),Drosophila melanogasterembryos (~50 µm) and rat kidney slices (~1.2 mm) using low CPA concentrations (2–4 M). Using tunable voltage pulse widths from 10 µs to 100 ms, numerical simulation predicts that warming rates from 5 × 104to 6 × 108 °C/min can be achieved. Altogether, our results present a general solution to the cryopreservation of a broad spectrum of cellular, organismal and tissue-based biosystems. 
    more » « less
  3. The axolotl (Ambystoma mexicanum) draws great attention around the world for its importance as a biomedical research model, but housing and maintaining live animals is increasingly expensive and risky as new transgenic lines are developed. The goal of this work was to develop an initial practical pathway for sperm cryopreservation to support germplasm repository development. The present study assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. By the stripping of males, 25–800 µL of sperm fluid was collected at concentrations of 1.6 × 106 to 8.9 × 107 sperm/mL. Sperm remained motile for 5 d in Hanks’ Balanced Salt Solution (HBSS) at osmolalities of 100–600 mOsm/kg. Sperm cryopreserved in 0.25 mL French straws at 20 °C/min in a final concentration of 5% DMFA plus 200 mM trehalose and thawed at 25 °C for 15 s resulted in 52 ± 12% total post-thaw motility. In six in vitro fertilization trials, 20% of eggs tested with thawed sperm continued to develop to stage 7–8 after 24 h, and a third of those embryos (58) hatched. This work is the first report of successful production of axolotl offspring with cryopreserved sperm, providing a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications. 
    more » « less
  4. Studies of plant–microbe interactions using synthetic microbial communities (SynComs) often require the removal of seed-associated microbes by seed sterilization prior to inoculation to provide gnotobiotic growth conditions. Diverse seed sterilization protocols have been developed and have been used on different plant species with various amounts of validation. From these studies it has become clear that each plant species requires its own optimized sterilization protocol. It has, however, so far not been tested whether the same protocol works equally well for different varieties and seed sources of one plant species. We evaluated six seed sterilization protocols on two different varieties (Sugar Bun and B73) of maize. All unsterilized maize seeds showed fungal growth upon germination on filter paper, highlighting the need for a sterilization protocol. A short sterilization protocol with hypochlorite and ethanol was sufficient to prevent fungal growth on Sugar Bun germinants; however a longer protocol with heat treatment and germination in fungicide was needed to obtain clean B73 germinants. This difference may have arisen from the effect of either genotype or seed source. We then tested the protocol that performed best for B73 on three additional maize genotypes from four sources. Seed germination rates and fungal contamination levels varied widely by genotype and geographic source of seeds. Our study shows that consideration of both variety and seed source is important when optimizing sterilization protocols and highlights the importance of including seed source information in plant–microbe interaction studies that use sterilized seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  5. Marsano, René Massimiliano (Ed.)
    The yellow fever mosquito Aedes aegypti is a major disease vector and an increasingly popular emerging model research organism. We present here an improved protocol for the collection, fixation, and preparation of A. aegypti embryos for immunohistochemical and in situ hybridization studies. The processing of A. aegypti embryos for such studies is complicated by the inability to easily remove the vitelline membrane, which prevents the reagents needed for staining from reaching their targets, and which furthermore obscures visualization of the embryo since the membrane is highly sclerotized. Previously described protocols for removal of the vitelline membrane are very low throughput, limiting the capacity of work that can be accomplished in a reasonable timeframe. Our adapted protocol increases the throughput capacity of embryos by an individual user, with experienced users able to prepare an average of 100–150 embryos per hour. The protocol provides high-quality intact embryos that can be used for morphological, immunohistochemical, and in situ hybridization studies. The protocol has been successfully tested on embryos of ages ranging from 14h after egg laying (AEL) at 27°C through to 55h AEL. Critical to the success of the optimized protocol is the selection, fabrication, and description of the tools required. To this end, a video-demonstrated protocol has been placed at protocols.io to clarify the protocol and provide easy access and training to anyone interested in the preparation of A. aegypti embryos for biological studies. 
    more » « less