skip to main content


Title: t-METASET: Task-Aware Generation of Metamaterial Datasets by Diversity-Based Active Learning
Abstract

Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of the multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active-learning-based data acquisition framework aiming to guide both balanced and task-aware data generation. Uniquely, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design: when a massive shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets (∼ O(104)) are used to demonstrate the efficacy. Applicable to general design representations, t-METASET can boost future advancements in data-driven design.

 
more » « less
Award ID(s):
1835677
NSF-PAR ID:
10471620
Author(s) / Creator(s):
; ;  ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8622-9
Format(s):
Medium: X
Location:
St. Louis, Missouri, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Often built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active learning-based data acquisition framework aiming to guide both diverse and task-aware data generation. Distinctly, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design of metamaterials: when a massive (∼O(104)) shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets are used to demonstrate the efficacy. Applicable to general image-based design representations, t-METASET could boost future advancements in data-driven design.

     
    more » « less
  2. Abstract

    While machine learning has emerged in recent years as a useful tool for the rapid prediction of materials properties, generating sufficient data to reliably train models without overfitting is often impractical. Towards overcoming this limitation, we present a general framework for leveraging complementary information across different models and datasets for accurate prediction of data-scarce materials properties. Our approach, based on a machine learning paradigm called mixture of experts, outperforms pairwise transfer learning on 14 of 19 materials property regression tasks, performing comparably on four of the remaining five. The approach is interpretable, model-agnostic, and scalable to combining an arbitrary number of pre-trained models and datasets to any downstream property prediction task. We anticipate the performance of our framework will further improve as better model architectures, new pre-training tasks, and larger materials datasets are developed by the community.

     
    more » « less
  3. Contextual information has been widely used in many computer vision tasks. However, existing approaches design specific contextual information mechanisms for different tasks. In this work, we propose a general context learning and reasoning framework for object detection tasks with three components: local contextual labeling, contextual graph generation and spatial contextual reasoning. With simple user defined parameters, local contextual labeling automatically enlarge the small object labels to include more local contextual information. A Graph Convolutional Network learns over the generated contextual graph to build a semantic space. A general spatial relation is used in spatial contextual reasoning to optimize the detection results. All three components can be easily added and removed from a standard object detector. In addition, our approach also automates the training process to find the optimal combinations of user defined parameters. The general framework can be easily adapted to different tasks. In this paper we compare our framework with a previous multistage context learning framework specifically designed for storefront accessibility detection and a state of the art detector for pedestrian detection. Experimental results on two urban scene datasets demonstrate that our proposed general framework can achieve same performance as the specifically designed multistage framework on storefront accessibility detection, and with improved performance on pedestrian detection over the state of art detector. 
    more » « less
  4. Abstract

    Rapid discovery and synthesis of future materials requires intelligent data acquisition strategies to navigate large design spaces. A popular strategy is Bayesian optimization, which aims to find candidates that maximize material properties; however, materials design often requires finding specific subsets of the design space which meet more complex or specialized goals. We present a framework that captures experimental goals through straightforward user-defined filtering algorithms. These algorithms are automatically translated into one of three intelligent, parameter-free, sequential data collection strategies (SwitchBAX, InfoBAX, and MeanBAX), bypassing the time-consuming and difficult process of task-specific acquisition function design. Our framework is tailored for typical discrete search spaces involving multiple measured physical properties and short time-horizon decision making. We demonstrate this approach on datasets for TiO2nanoparticle synthesis and magnetic materials characterization, and show that our methods are significantly more efficient than state-of-the-art approaches. Overall, our framework provides a practical solution for navigating the complexities of materials design, and helps lay groundwork for the accelerated development of advanced materials.

     
    more » « less
  5. Abstract

    Kirigami-engineering has become an avenue for realizing multifunctional metamaterials that tap into the instability landscape of planar surfaces embedded with cuts. Recently, it has been shown that two-dimensional Kirigami motifs can unfurl a rich space of out-of-plane deformations, which are programmable and controllable across spatial scales. Notwithstanding Kirigami’s versatility, arriving at a cut layout that yields the desired functionality remains a challenge. Here, we introduce a comprehensive machine learning framework to shed light on the Kirigami design space and to rationally guide the design and control of Kirigami-based materials from the meta-atom to the metamaterial level. We employ a combination of clustering, tandem neural networks, and symbolic regression analyses to obtain Kirigami that fulfills specific design constraints and inform on their control and deployment. Our systematic approach is experimentally demonstrated by examining a variety of applications at different hierarchical levels, effectively providing a tool for the discovery of shape-shifting Kirigami metamaterials.

     
    more » « less