skip to main content


Title: Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal battery with commercial mass loading high‐nickel NMC and thin anodes
Abstract

A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–xyO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.

 
more » « less
Award ID(s):
1911905
NSF-PAR ID:
10471664
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Carbon Energy
Volume:
5
Issue:
3
ISSN:
2637-9368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With the rapid growth of the lithium‐ion battery (LIBs) market, recycling and re‐use of end‐of‐life LIBs to reclaim lithium (Li) and transition metal (TM) resources (e.g., Co, Ni), as well as eliminating pollution from disposal of waste batteries, has become an urgent task. Here, for the first time the ambient‐pressure relithiation of degraded LiNi0.5Co0.2Mn0.3O2(NCM523) cathodes via eutectic Li+molten‐salt solutions is successfully demonstrated. Combining such a low‐temperature relithiation process with a well‐designed thermal annealing step, NCM523 cathode particles with significant Li loss (≈40%) and capacity degradation (≈50%) can be successfully regenerated to achieve their original composition and crystal structures, leading to effective recovery of their capacity, cycling stability, and rate capability to the levels of the pristine materials. Advanced characterization tools including atomic resolution electron microscopy imaging and electron energy loss spectroscopy are combined to demonstrate that NCM523's original layered crystal structure is recovered. For the first time, it is shown that layer‐to‐rock salt phase change on the surfaces and subsurfaces of the cathode materials can be reversed if lithium can be incorporated back to the material. The result suggests the great promise of using eutectic Li+molten–salt solutions for ambient‐pressure relithiation to recycle and remanufacture degraded LIB cathode materials.

     
    more » « less
  2. Abstract

    A dual‐layer interphase that consists of an in‐situ‐formed lithium carboxylate organic layer and a thin BF3‐doped monolayer Ti3C2MXene on Li metal is reported. The honeycomb‐structured organic layer increases the wetting of electrolyte, leading to a thin solid electrolyte interface (SEI). While the BF3‐doped monolayer MXene provides abundant active sites for lithium homogeneous nucleation and growth, resulting in about 50% reduced thickness of inorganic‐rich components among the SEI layer. A low overpotential of less than 30 mV over 1000 h cycling in symmetric cells is received. The functional BF3 groups, along with the excellent electronic conductivity and smooth surface of the MXene, greatly reduce the lithium plating/stripping energy barrier, enabling a dendrite‐free lithium‐metal anode. The battery with this dual‐layer coated lithium metal as the anode displays greatly improved electrochemical performance. A high capacity‐retention of 175.4 mAh g−1at 1.0 C is achieved after 350 cycles. In a pouch cell with a capacity of 475 mAh, the battery still exhibits a high discharge capacity of 165.6 mAh g−1with a capacity retention of 90.2% after 200 cycles. In contrast to the fast capacity decay of pure Li metal, the battery using NCA as the cathode also displays excellent capacity retention in both coin and pouch cells. The dual‐layer modified surface provides an effective approach in stabilizing the Li‐metal anode.

     
    more » « less
  3. Abstract

    The practical application of lithium (Li) metal anode (LMA) is still hindered by non‐uniformity of solid electrolyte interphase (SEI), formation of “dead” Li, and continuous consumption of electrolyte although LMA has an ultrahigh theoretical specific capacity and a very low electrochemical redox potential. Herein, a facile protection strategy is reported for LMA using a double layer (DL) coating that consists of a polyethylene oxide (PEO)‐based bottom layer that is highly stable with LMA and promotes uniform ion flux, and a cross‐linked polymer‐based top layer that prevents solvation of PEO layer in electrolytes. Li deposited on DL‐coated Li (DL@Li) exhibits a smoother surface and much larger size than that deposited on bare Li. The LiF/Li2O enriched SEI layer generated by the salt decomposition on top of DL@Li further suppresses the side reactions between Li and electrolyte. Driven by the abovementioned advantageous features, the DL@Li||LiNi0.6Mn0.2Co0.2O2cells demonstrate capacity retention of 92.4% after 220 cycles at a current density of 2.1 mA cm–2(C/2 rate) and stability at a high charging current density of 6.9 mA cm–2(1.5 C rate). These results indicate that the DL protection is promising to overcome the rate limitation of LMAs and high energy‐density Li metal batteries.

     
    more » « less
  4. Abstract

    LiNO3is a widely used salt‐additive that markedly improves the stability of ether‐based electrolytes at a Li metal anode but is generally regarded as incompatible with alkyl carbonates. Here we find that contrary to common wisdom, cyclic carbonate solvents such as ethylene carbonate can dissolve up to 0.7 M LiNO3without any additives, largely improving the anode reversibility. We demonstrate the significance of our findings by upgrading various state‐of‐the‐art carbonate electrolytes with LiNO3, which provides large improvements in batteries composed of thin lithium (50 μm) anode and high voltage cathodes. Capacity retentions of 90.5 % after 600 cycles and 92.5 % after 200 cycles are reported for LiNi0.6Mn0.2Co0.2O2(2 mAh cm−2, 0.5 C) and LiNi0.8Mn0.1Co0.1O2cathode (4 mAh cm−2, 0.2 C), respectively. 1 Ah pouch cells (≈300 Wh kg−1) retain more than 87.9 % after 100 cycles at 0.5 C. This work illustrates that reforming traditional carbonate electrolytes provides a scalable, cost‐effective approach towards practical LMBs.

     
    more » « less
  5. Abstract

    LiNO3is a widely used salt‐additive that markedly improves the stability of ether‐based electrolytes at a Li metal anode but is generally regarded as incompatible with alkyl carbonates. Here we find that contrary to common wisdom, cyclic carbonate solvents such as ethylene carbonate can dissolve up to 0.7 M LiNO3without any additives, largely improving the anode reversibility. We demonstrate the significance of our findings by upgrading various state‐of‐the‐art carbonate electrolytes with LiNO3, which provides large improvements in batteries composed of thin lithium (50 μm) anode and high voltage cathodes. Capacity retentions of 90.5 % after 600 cycles and 92.5 % after 200 cycles are reported for LiNi0.6Mn0.2Co0.2O2(2 mAh cm−2, 0.5 C) and LiNi0.8Mn0.1Co0.1O2cathode (4 mAh cm−2, 0.2 C), respectively. 1 Ah pouch cells (≈300 Wh kg−1) retain more than 87.9 % after 100 cycles at 0.5 C. This work illustrates that reforming traditional carbonate electrolytes provides a scalable, cost‐effective approach towards practical LMBs.

     
    more » « less