skip to main content


Title: Quantifying hierarchy and prestige in US ballet academies as social predictors of career success
Abstract

In the recent decade, we have seen major progress in quantifying the behaviors and the impact of scientists, resulting in a quantitative toolset capable of monitoring and predicting the career patterns of the profession. It is unclear, however, if this toolset applies to other creative domains beyond the sciences. In particular, while performance in the arts has long been difficult to quantify objectively, research suggests that professional networks and prestige of affiliations play a similar role to those observed in science, hence they can reveal patterns underlying successful careers. To test this hypothesis, here we focus on ballet, as it allows us to investigate in a quantitative fashion the interplay of individual performance, institutional prestige, and network effects. We analyze data on competition outcomes from 6363 ballet students affiliated with 1603 schools in the United States, who participated in the Youth America Grand Prix (YAGP) between 2000 and 2021. Through multiple logit models and matching experiments, we provide evidence that schools’ strategic network position bridging between communities captures social prestige and predicts the placement of students into jobs in ballet companies. This work reveals the importance of institutional prestige on career success in ballet and showcases the potential of network science approaches to provide quantitative viewpoints for the professional development of careers beyond science.

 
more » « less
NSF-PAR ID:
10471734
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  2. At Michigan State University (MSU), the AGEP learning community features the participation of over 70% of the African-American, Latinx, and Native-American under-represented minorities (URM), also referred to as Black, Indigenous, and People of Color (BIPOC) doctoral students in fields sponsored by the National Science Foundation (NSF). Monthly learning community (LC) meetings allow AGEP participants to create dialogues across disciplines through informal oral presentations about current research. The learning communities also offer opportunities to share key information regarding graduate school success and experience; thus providing a social network that extends beyond the academic setting. At MSU, AGEP also provides an interdisciplinary and multigenerational environment that includes graduate students, faculty members, post-docs and prospective graduate students. Using monthly surveys over a 4-year period, we evaluated the impact of this AGEP initiative focusing on the utility of the program, perceptions of departmental climate, career plans and institutional support. Findings indicate that AGEP participants consider their experiences in the program as vital elements in the development of their professional identity, psychological safety, and career readiness. Experiences that were identified included networking across departments, focus on career placement, involvement in minority recruitment and professional development opportunities. Additionally, AGEP community participants resonated with the “sense of community” that is at the core of the MSU AGEP program legacy. In this article, we proposed a variation of Tomlinson’s Graduate Student Capital model to describe the AGEP participants’ perceptions and experiences in MSU AGEP. Within this 4-year period, we report over 70% graduation rate (completing with advanced degrees). More than half of Ph.D. students and almost 30% of master’s degree students decided to pursue academia as their careers. In addition, we found a high satisfaction rate of AGEP among the participants. Our analysis on graduate student capital helped us identify motivating capital development by years spent at MSU and as an AGEP member. These findings may provide some insight into which capitals may be deemed important for students relative to their experiences at MSU and in AGEP and how their priorities change as they transition toward graduation. 
    more » « less
  3. The importance of diversifying the national STEM workforce is well-established in the literature (Marrongelle, 2018). This need extends to graduate education in the STEM fields, leading N.C. A&T to invest considerably in graduate education and wraparound support initiatives that help graduate students build science identity and competencies for careers both within and beyond academia. The NSF-funded Bridges to the Doctorate project will integrate culturally reflective mentoring and professional development specifically designed for Black, Latinx, and Native American Ph.D. students. This holistic, graduate student development model includes academic and professional skill-building for STEM careers alongside targeted support for pursuing fellowship opportunities. This paper discusses the planned mentoring approach for the aforementioned program and previous approaches to mentoring graduate students used at N.C. A&T. The BD Fellows program will support formal and informal mentoring relationships, as mentoring contributes towards retention in STEM graduate programs (Ragins, 2007). BD Fellows will participate in monthly one-hour seminars on how to identify, establish, and maintain informal mentoring relationships (Schwartz et al., 2018; Parnes et al., 2020), while STEM faculty will attend seminars on leveraging their social networks as vital sources of mentorship for the BD Fellows. Using a multi-pronged collaborative approach, this model integrates the evidence-based domains of self-efficacy (Laurencelle & Scanlan, 2018; Lent et al., 1994; Lent et al., 2008), science/research identity (Lent et al., 2015; Zimmerman, 2000), and social cognitive career theory (Lent et al., 2005; Lent and Brown, 2006) to recruit, enroll, and graduate LSAMP Fellows with STEM doctoral degrees. Guided by the theories, the following questions will be addressed: (1) To what extent is culturally reflective mentoring identified as a critical driver of B2D Fellows’ success? (2) To what extent are the program’s training components fostering increases in B2D Fellow’s self-efficacy, competency, and science identity? (3) What is the strength of the correlation between participation in the program training components, mentoring activities, and persistence in graduate school? (4) To what extent does the perceived importance of self-efficacy, competency, and science identity differ by race/ethnicity and gender? These data will be analyzed using both formative and summative assessments of program outcomes. Quantitative data will include pre-, post-, and exit surveys. Qualitative data will assess the impact of mentoring and program support. This study will be guided by established protocols that have been approved by the N.C. A&T IRB. It is anticipated that our BD Fellows program will significantly impact the retention and graduation rates of underrepresented minority STEM graduate students in our doctoral programs, thus producing a diverse workforce of STEM professionals. Materials from the program recruiting cycle, mentoring workshops, and the structured fellowship application process will be disseminated freely to other LSAMP and minority-serving institutions across the country. Strategies and outcomes of this project will be published in peer-reviewed journals and shared in conference proceedings. 
    more » « less
  4. Research shows that the LGBTQ climate in engineering, and other STEM, undergraduate degree programs is rife with heteronormativity and cissexism, leading LGBTQ students to leave STEM majors and careers at higher rates than their heterosexual, cisgender peers. In order to develop a diverse STEM workforce and adequately prepare the next generation of professionals in STEM, higher education, and especially engineering education, must address inequities such as these to ensure broad participation in STEM fields. This NSF CAREER-funded project helps meet this need by examining the participation of LGBTQ students in STEM fields. The project focuses on three primary research aims to address this purpose: test the relationships between the composition of LGBTQ students’ social networks and non-cognitive STEM outcomes, compare STEM degree completion rates between LGBTQ students and their cisgender, heterosexual peers, and explore the intersection of STEM discipline-based identity (e.g., engineering identity, science identity) with sexual and gender identity. This project stands to improve our understanding of how to broaden participation in STEM by pursuing robust research efforts that illuminate the ways sexual and gender identity shape trajectories into, through, and out of STEM. The purpose of this poster is to present preliminary outcomes from the first research aim of the project, which is to test the relationship between composition of students’ social networks and non-cognitive outcomes, and compare these relationships by sexual and gender identities. We hypothesize that homophily within students’ social networks, especially for heterosexual and cisgender students, will predict greater levels of identification with one’s STEM discipline, sense of belonging in STEM, and commitment to a STEM major. LGBTQ students whose LGBTQ connections are primarily outside STEM are hypothesized to feel more of a pull away from STEM. This poster focuses on the social network analysis phase of the project, including instrument development, data collection procedures, and preliminary analysis of the data. Data collection will commence in the spring 2022 semester. Social network analysis (SNA) is a method that measures and represents the patterns and information of contextually bound structural relationships to explain why the relationships occur and the outcomes of their existence, and SNA is only recently gaining ground in educational research. We developed a survey that incorporates generating an ego-centric social network, or the people an individual relies on most for support, with existing measures for sense of belonging, discipline-based identity, and commitment to field of study, adapted for this study’s purpose. The survey validation procedure included cognitive interviews with undergraduate students and expert reviews by engineering education and institutional research experts. Data collection will occur at five colleges and universities nation-wide, representing a range of institutional types, geographical diversity, and student body diversity. The poster will detail the theory and procedures that constitute SNA research, the survey development process for this phase of the project, and preliminary results from analysis of the data. 
    more » « less
  5. Abstract

    While the traditional goals of undergraduate courses are often content-based, the development of career-readiness and professional skills, such as those listed by the National Association of Colleges and Employers, are increasingly recognized as important learning outcomes. As Mammalogy courses embrace more hands-on learning activities, they provide the opportunity to embed these professional skills, which are directly relevant to many careers in science. For example, many Mammalogy courses may include projects that incorporate experimental design and data analysis that focus on quantitative literacy, in addition to technical skills including small mammal trapping and handling, or preparing voucher specimens, that focus on problem-solving and attention to detail. Here, we review the professional skills that can be developed through a Mammalogy course and evaluate evidence-based approaches to build those skills into our courses. One approach, using Course-based Undergraduate Research Experiences (CUREs), provides opportunities for both student skill development and instructor research program development. Because they invite students to participate in authentic scientific inquiry—from study design and data collection, to analysis and reporting of results—students participating in CUREs reported significant gains in their comfort with several important professional skills, including conducting field procedures, formulating and analyzing data, normalizing failure, and attempting new procedures on their own. Finally, we review the literature to demonstrate how active learning approaches inherent in CUREs can help students to build familiarity with technologies and techniques for collecting and assessing data from wild mammal populations, as well as to build important professional skills such as teamwork, leadership, problem-solving, and written and oral communication.

     
    more » « less