skip to main content


Title: Learning From Human Directional Corrections
This paper proposes a novel approach that enables a robot to learn an objective function incrementally from human directional corrections. Existing methods learn from human magnitude corrections; since a human needs to carefully choose the magnitude of each correction, those methods can easily lead to over-corrections and learning inefficiency. The proposed method only requires human directional corrections — corrections that only indicate the direction of an input change without indicating its magnitude. We only assume that each correction, regardless of its magnitude, points in a direction that improves the robot’s current motion relative to an unknown objective function. The allowable corrections satisfying this assumption account for half of the input space, as opposed to the magnitude corrections which have to lie in a shrinking level set. For each directional correction, the proposed method updates the estimate of the objective function based on a cutting plane method, which has a geometric interpretation. We have established theoretical results to show the convergence of the learning process. The proposed method has been tested in numerical examples, a user study on two human-robot games, and a real-world quadrotor experiment. The results confirm the convergence of the proposed method and further show that the method is significantly more effective (higher success rate), efficient/effortless (less human corrections needed), and potentially more accessible (fewer early wasted trials) than the state-of-the-art robot learning frameworks.  more » « less
Award ID(s):
1837515
NSF-PAR ID:
10471788
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Robotics
Volume:
39
Issue:
1
ISSN:
1552-3098
Page Range / eLocation ID:
625 to 644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robots can learn to imitate humans by inferring what the human is optimizing for. One common framework for this is Bayesian reward learning, where the robot treats the human's demonstrations and corrections as observations of their underlying reward function. Unfortunately, this inference is doubly-intractable: the robot must reason over all the trajectories the person could have provided and all the rewards the person could have in mind. Prior work uses existing robotic tools to approximate this normalizer. In this letter, we group previous approaches into three fundamental classes and analyze the theoretical pros and cons of their approach. We then leverage recent research from the statistics community to introduce Double MH reward learning, a Monte Carlo method for asymptotically learning the human's reward in continuous spaces. We extend Double MH to conditionally independent settings (where each human correction is viewed as completely separate) and conditionally dependent environments (where the human's current correction may build on previous inputs). Across simulations and user studies, our proposed approach infers the human's reward parameters more accurately than the alternate approximations when learning from either demonstrations or corrections. 
    more » « less
  2. When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or guide the robot. The state of the art treats these interactions as disturbances that the robot should reject or avoid. At best, these robots respond safely while the human interacts; but after the human lets go, these robots simply return to their original behavior. We recognize that physical human–robot interaction (pHRI) is often intentional: the human intervenes on purpose because the robot is not doing the task correctly. In this article, we argue that when pHRI is intentional it is also informative: the robot can leverage interactions to learn how it should complete the rest of its current task even after the person lets go. We formalize pHRI as a dynamical system, where the human has in mind an objective function they want the robot to optimize, but the robot does not get direct access to the parameters of this objective: they are internal to the human. Within our proposed framework human interactions become observations about the true objective. We introduce approximations to learn from and respond to pHRI in real-time. We recognize that not all human corrections are perfect: often users interact with the robot noisily, and so we improve the efficiency of robot learning from pHRI by reducing unintended learning. Finally, we conduct simulations and user studies on a robotic manipulator to compare our proposed approach with the state of the art. Our results indicate that learning from pHRI leads to better task performance and improved human satisfaction.

     
    more » « less
  3. Abstract Background

    Lung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin‐sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities.

    Purpose

    The standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error‐prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection.

    Methods

    A robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC‐IDRI) dataset are used for training, validation, and testing.

    Results

    Using only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre‐defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions.

    Conclusions

    A pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients.

     
    more » « less
  4. Acquired immunodeficiency syndrome (AIDS) is a syndrome caused by the human immunodeficiency virus (HIV). During the progression of AIDS, a patient’s the immune system is weakened, which increases the patient’s susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multi-label classification problem. Given this multi-class relationship, traditional single-label classification methods usually fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this paper, we propose a novel multi-label Robust Sample Specific Distance (RSSD) method to identify multi-class HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase sequence against a given drug nucleoside analogue and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of ℓ1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, non-greedy, iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV-1 drug resistance data set with over 600 RT sequences and five nucleoside analogues. We compared our method against other state-of-the-art multi-label classification methods and the experimental results have demonstrated the effectiveness of our proposed method. 
    more » « less
  5. Objective

    This study aims to improve workers’ postures and thus reduce the risk of musculoskeletal disorders in human-robot collaboration by developing a novel model-free reinforcement learning method.

    Background

    Human-robot collaboration has been a flourishing work configuration in recent years. Yet, it could lead to work-related musculoskeletal disorders if the collaborative tasks result in awkward postures for workers.

    Methods

    The proposed approach follows two steps: first, a 3D human skeleton reconstruction method was adopted to calculate workers’ continuous awkward posture (CAP) score; second, an online gradient-based reinforcement learning algorithm was designed to dynamically improve workers’ CAP score by adjusting the positions and orientations of the robot end effector.

    Results

    In an empirical experiment, the proposed approach can significantly improve the CAP scores of the participants during a human-robot collaboration task when compared with the scenarios where robot and participants worked together at a fixed position or at the individual elbow height. The questionnaire outcomes also showed that the working posture resulted from the proposed approach was preferred by the participants.

    Conclusion

    The proposed model-free reinforcement learning method can learn the optimal worker postures without the need for specific biomechanical models. The data-driven nature of this method can make it adaptive to provide personalized optimal work posture.

    Application

    The proposed method can be applied to improve the occupational safety in robot-implemented factories. Specifically, the personalized robot working positions and orientations can proactively reduce exposure to awkward postures that increase the risk of musculoskeletal disorders. The algorithm can also reactively protect workers by reducing the workload in specific joints.

     
    more » « less