skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementation of the Digital QS-SVM-Based Beamformer on an FPGA Platform
To address practical challenges in establishing and maintaining robust wireless connectivity such as multi-path effects, low latency, size reduction, and high data rate, we have deployed the digital beamformer, as a spatial filter, by using the hybrid antenna array at an operating frequency of 10 GHz. The proposed digital beamformer utilizes a combination of the two well-established beamforming techniques of minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV). In this case, the MVDR beamforming method updates weight vectors on the FPGA board, while the LCMV beamforming technique performs nullsteering in directions of interference signals in the real environment. The most well-established machine learning technique of support vector machine (SVM) for the Direction of Arrival (DoA) estimation is limited to problems with linearly-separable datasets. To overcome the aforementioned constraint, the quadratic surface support vector machine (QS-SVM) classifier with a small regularizer has been used in the proposed beamformer for the DoA estimation in addition to the two beamforming techniques of LCMV and MVDR. In this work, we have assumed that five hybrid array antennas and three sources are available, at which one of the sources transmits the signal of interest. The QS-SVM-based beamformer has been deployed on the FPGA board for spatially filtering two signals from undesired directions and passing only one of the signals from the desired direction. The simulation results have verified the strong performance of the QS-SVM-based beamformer in suppressing interference signals, which are accompanied by placing deep nulls with powers less than −10 dB in directions of interference signals, and transferring the desired signal. Furthermore, we have verified that the performance of the QS-SVM-based beamformer yields other advantages including average latency time in the order of milliseconds, performance efficiency of more than 90%, and throughput of nearly 100%.  more » « less
Award ID(s):
2019194
PAR ID:
10471857
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
3
ISSN:
1424-8220
Page Range / eLocation ID:
1742
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a new notch steering scheme for hybrid beamforming transmitters (TXs) aimed at suppressing spatial interference, thereby enhancing the signal-to-interference-plus-noise ratio (SINR) to support spatial multiplexing. Built upon existing phased arrays, this scheme integrates an auxiliary-path vector modulator (VM) into each antenna element, which in turn, forms an interference-canceling beam. By spatially combining the array factors (AFs) of the main beam and the interference-canceling beam, a deep spatial notch is created while ensuring minimal main-beam power degradation. Unlike the conventional zero-forcing method that requires matrix inversion in digital for spatial notch creation, our scheme enables the computation of antenna weights in analog, significantly reducing the computational cost and latency. Leveraging this new notch steering scheme, we develop a 28-GHz four-element fully connected (FC) hybrid beamforming TX array using the GlobalFoundries 45-nm CMOS Silicon-on-Insulator (SOI) process. It is capable of simultaneously transmitting two independent, wideband data streams (DSs) in the same polarization toward two directions. In probing-based measurements, each TX channel delivers 19.7-dBm OP1 dB, 20.4-dBm PSAT , and 30.6% peak power-added efficiency (PAE) at 29 GHz, demonstrating state-of-the-art TX linearity and efficiency. In over-the-air (OTA) measurements, the packaged TX array achieves 29.8-dBm EIRP1 dB and is able to steer a spatial notch outside the −10-dB beamwidth of the main beam, with a notch depth of >35 dB and a main-beam power degradation of < 0.8 dB. Moreover, in spatial multiplexing demonstrations, the TX array is capable of transmitting a 400-MHz 64-quadrature amplitude modulation (QAM) signal to the intended receiver (RX) in the first DS, while suppressing the co-channel continuous-wave or wideband modulated interference created by the second DS with a high SINR. 
    more » « less
  2. The ability to sense propagating electromagnetic plane waves based on their directions of arrival (DOAs) is fundamental to a range of radio frequency (RF) sensing, communications, and imaging applications. This paper introduces an algorithm for the wideband true time delay digital delay Vandermonde matrix (DVM), utilizing Thiran fractional delays that are useful for realizing RF sensors having multiple look DOA support. The digital DVM algorithm leverages sparse matrix factorization to yield multiple simultaneous RF beams for low-complexity sensing applications. Consequently, the proposed algorithm offers a reduction in circuit complexity for multi-beam digital wideband beamforming systems employing Thiran fractional delays. Unlike finite impulse response filter-based approaches which are wideband but of a high filter order, the Thiran filters trade usable bandwidth in favor of low-complexity circuits. The phase and group delay responses of Thiran filters with delays of a fractional sampling period will be demonstrated. Thiran filters show favorable results for sample delay blocks with a temporal oversampling factor of three. Thiran fractional delays of orders three and four are mapped to Xilinx FPGA RF-SoC technologies for evaluation. The preliminary results of the APF-based Thiran fractional delays on FPGA can potentially be used to realize DVM factorizations using application-specific integrated circuit (ASIC) technology. 
    more » « less
  3. Integrated sensing and communication has emerged as a transformative technology for future wireless communication networks, enabling the simultaneous realization of radar sensing and communication functions by sharing available resources. To fully exploit the available spatial degrees of freedom in monostatic ISAC systems, we propose a dynamic array partitioning architecture that allows the base station to allocate antennas for transmitting dual-functional signals and receiving the corresponding echoes. Based on this architecture, we jointly design the transmit beamforming and array partitioning to minimize the Cram´er-Rao bound (CRB) for target directionof- arrival estimation, while ensuring compliance with signalto- interference-plus-noise ratio requirements for multiuser communication, power budget constraints, and array partitioning limitations. To address the resulting optimization problem, we develop an alternating algorithm leveraging alternating direction method of multipliers and semi-definite relaxation. Simulation results demonstrate that the proposed joint array partitioning and beamforming design significantly improves the CRB and the resulting DOA estimation performance. 
    more » « less
  4. Integrated sensing and communication has been identified as an enabling technology for forthcoming wireless networks. In an effort to achieve an improved performance trade-off between multiuser communications and radar sensing, this paper considers a dynamically-partitioned antenna array architecture for monostatic ISAC systems, in which each element of the array at the base station can function as either a transmit or receive antenna. To fully exploit the available spatial degrees of freedom for both communication and sensing functions, we jointly design the partitioning of the array between transmit and receive antennas together with the transmit beamforming in order to minimize the direction-of-arrival (DOA) estimation error, while satisfying constraints on the communication signal-to-interference-plusnoise ratio and the transmit power budget. An alternating algorithm based on Dinkelbach’s transform, the alternative direction method of multipliers, and majorization-minimization is developed to solve the resulting complicated optimization problem. To reduce the computational complexity, we also present a heuristic three-step strategy that optimizes the transmit beamforming after determining the antenna partitioning. Simulation results confirm the effectiveness of the proposed algorithms in significantly reducing the DOA estimation error. 
    more » « less
  5. Full-duplex (FD) wireless communication refers to a communication system in which both ends of a wireless link transmit and receive data simultaneously and on the same frequency band. One of the major challenges of FD communication is self-interference (SI), which refers to the interference caused by transmitting elements of a radio to its own receiving elements. Fully digital beamforming is a technique used to conduct beamforming and has been recently repurposed to also reduce SI. However, the cost of fully digital systems (e.g., base stations) dramatically increases with the increase in the number of antennas as these systems use a separate Tx-Rx RF chain for each antenna element. Hybrid beamforming systems use a much smaller number of RF chains to feed the same number of antennas, and hence can significantly reduce the deployment cost. In this paper, we aim to quantify the performance gap between these two radio architectures in terms of SI cancellation and system capacity in FD multi-user MIMO setups. We first obtained over-the-air channel measurement data on two outdoor massive MIMO deployments over the course of three months. We next study two state-of-the-art transmit beamforming based FD systems for fully digital and hybrid architectures. We show that the hybrid beamforming system can achieve 80-97% of the fully digital system capacity, depending on the number of clients. 
    more » « less