skip to main content


Title: ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time
Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner. Given a high-level, symbolic description of a novel concept in terms of previously learned visual concepts and their relations, humans can recognize novel concepts without seeing any examples. Moreover, they can acquire new concepts by parsing and communicating symbolic structures using learned visual concepts and relations. Endowing these capabilities in machines is pivotal in improving their generalization capability at inference time. We introduced Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way. ZeroC represents concepts as graphs of constituent concept models (as nodes) and their relations (as edges). To allow inference time composition, we employed energy-based models (EBMs) to model concepts and relations. We designed ZeroC architecture so that it allows a one-to-one mapping between a symbolic graph structure of a concept and its corresponding EBM, which for the first time, allows acquiring new concepts, communicating its graph structure, and applying it to classification and detection tasks (even across domains) at inference time. We introduced algorithms for learning and inference with ZeroC. We evaluated ZeroC on a challenging grid-world dataset which is designed to probe zero-shot concept recognition and acquisition, and demonstrated its capability.  more » « less
Award ID(s):
1835598
NSF-PAR ID:
10471862
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Curran Associates, Inc.
Date Published:
Journal Name:
Advances in Neural Information Processing Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scene graph generation refers to the task of automatically mapping an image into a semantic structural graph, which requires correctly labeling each extracted object and their interaction relationships. Despite the recent success in object detection using deep learning techniques, inferring complex contextual relationships and structured graph representations from visual data remains a challenging topic. In this study, we propose a novel Attentive Relational Network that consists of two key modules with an object detection backbone to approach this problem. The first module is a semantic transformation module utilized to capture semantic embedded relation features, by translating visual features and linguistic features into a common semantic space. The other module is a graph self-attention module introduced to embed a joint graph representation through assigning various importance weights to neighboring nodes. Finally, accurate scene graphs are produced by the relation inference module to recognize all entities and the corresponding relations. We evaluate our proposed method on the widely-adopted Visual Genome dataset, and the results demonstrate the effectiveness and superiority of our model. 
    more » « less
  2. There are many realistic applications of activity recognition where the set of potential activity descriptions is combinatorially large. This makes end-to-end supervised training of a recognition system impractical as no training set is practically able to encompass the entire label set. In this paper, we present an approach to fine-grained recognition that models activities as compositions of dynamic action signatures. This compositional approach allows us to reframe fine-grained recognition as zero-shot activity recognition, where a detector is composed “on the fly” from simple first-principles state machines supported by deep-learned components. We evaluate our method on the Olympic Sports and UCF101 datasets, where our model establishes a new state of the art under multiple experimental paradigms. We also extend this method to form a unique framework for zero-shot joint segmentation and classification of activities in video and demonstrate the first results in zero-shot decoding of complex action sequences on a widely-used surgical dataset. Lastly, we show that we can use off-the-shelf object detectors to recognize activities in completely de-novo settings with no additional training. 
    more » « less
  3. Inspired by humans’ exceptional ability to master arithmetic and generalize to new problems, we present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines’ capability of learning generalizable concepts at three levels: perception, syntax, and semantics. In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images (i.e., perception), how multiple concepts are structurally combined to form a valid expression (i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e., semantics), all in a weakly supervised manner. Focusing on systematic generalization, we carefully design a five-fold test set to evaluate both the interpolation and the extrapolation of learned concepts w.r.t. the three levels. Further, we design a few-shot learning split to determine whether or not models can rapidly learn new concepts and generalize them to more complex scenarios. To comprehend existing models’ limitations, we undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3 (with the chain of thought prompting). The results indicate that current models struggle to extrapolate to long-range syntactic dependency and semantics. Models exhibit a considerable gap toward human-level generalization when evaluated with new concepts in a few-shot setting. Moreover, we discover that it is infeasible to solve HINT by merely scaling up the dataset and the model size; this strategy contributes little to the extrapolation of syntax and semantics. Finally, in zero-shot GPT-3 experiments, the chain of thought prompting exhibits impressive results and significantly boosts the test accuracy. We believe the HINT dataset and the experimental findings are of great interest to the learning community on systematic generalization. 
    more » « less
  4. Recognizing the attributes of objects and their parts is central to many computer vision applications. Although great progress has been made to apply object-level recognition, recognizing the attributes of parts remains less applicable since the training data for part attributes recognition is usually scarce especially for internet-scale applications. Furthermore, most existing part attribute recognition methods rely on the part annotations which are more expensive to obtain. In order to solve the data insufficiency problem and get rid of dependence on the part annotation, we introduce a novel Concept Sharing Network (CSN) for part attribute recognition. A great advantage of CSN is its capability of recognizing the part attribute (a combination of part location and appearance pattern) that has insufficient or zero training data, by learning the part location and appearance pattern respectively from the training data that usually mix them in a single label. Extensive experiments on CUB, Celeb A, and a newly proposed human attribute dataset demonstrate the effectiveness of CSN and its advantages over other methods, especially for the attributes with few training samples. Further experiments show that CSN can also perform zero-shot part attribute recognition. 
    more » « less
  5. Visual relationship reasoning is a crucial yet challenging task for understanding rich interactions across visual concepts. For example, a relationship 'man, open, door' involves a complex relation 'open' between concrete entities 'man, door'. While much of the existing work has studied this problem in the context of still images, understanding visual relationships in videos has received limited attention. Due to their temporal nature, videos enable us to model and reason about a more comprehensive set of visual relationships, such as those requiring multiple (temporal) observations (e.g., 'man, lift up, box' vs. 'man, put down, box'), as well as relationships that are often correlated through time (e.g., 'woman, pay, money' followed by 'woman, buy, coffee'). In this paper, we construct a Conditional Random Field on a fully-connected spatio-temporal graph that exploits the statistical dependency between relational entities spatially and temporally. We introduce a novel gated energy function parametrization that learns adaptive relations conditioned on visual observations. Our model optimization is computationally efficient, and its space computation complexity is significantly amortized through our proposed parameterization. Experimental results on benchmark video datasets (ImageNet Video and Charades) demonstrate state-of-the-art performance across three standard relationship reasoning tasks: Detection, Tagging, and Recognition. 
    more » « less