skip to main content


This content will become publicly available on August 1, 2024

Title: Live Captions in Virtual Reality (VR)
Few VR applications and games implement captioning of speech and audio cues, which either inhibits or prevents access of their application by deaf or hard of hearing (DHH) users, new language learners, and other caption users. Additionally, little to no guidelines exist on how to implement live captioning on VR headsets and how it may differ from traditional television captioning. To help fill the void of information behind user preferences of different VR captioning styles, we conducted a study with eight DHH participants to test three caption movement behaviors (head-locked, lag, and appear- locked) while watching live-captioned, single-speaker presentations in VR. Participants answered a series of Likert scale and open-ended questions about their experience. Participants’ preferences were split, but most participants reported feeling comfortable with using live captions in VR and enjoyed the experience. When participants ranked the caption behaviors, there was almost an equal divide between the three types tested. IPQ results indicated each behavior had similar immersion ratings, however participants found head-locked and lag captions more user-friendly than appear-locked captions. We suggest that participants may vary in caption preference depending on how they use captions, and that providing opportunities for caption customization is best.  more » « less
Award ID(s):
1763219
NSF-PAR ID:
10471910
Author(s) / Creator(s):
Publisher / Repository:
Journal for Accessible Technology and People with Disabilities
Date Published:
Journal Name:
Journal on Technology & Persons with Disabilities
Volume:
11
Format(s):
Medium: X
Location:
Los Angeles, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Few VR applications and games implement captioning of speech and audio cues, which either inhibits or prevents access of their application by deaf or hard of hearing (DHH) users, new language learners, and other caption users. Additionally, little to no guidelines exist on how to implement live captioning on VR headsets and how it may differ from traditional television captioning. To help fill the void of information behind user preferences of different VR captioning styles, we conducted a study with eight DHH participants to test three caption movement behaviors (head-locked, lag, and appearlocked) while watching live-captioned, single-speaker presentations in VR. Participants answered a series of Likert scale and open-ended questions about their experience. Participants’ preferences were split, but most participants reported feeling comfortable with using live captions in VR and enjoyed the experience. When participants ranked the caption behaviors, there was almost an equal divide between the three types tested. IPQ results indicated each behavior had similar immersion ratings, however participants found head-locked and lag captions more user-friendly than appear-locked captions. We suggest that participants may vary in caption preference depending on how they use captions, and that providing opportunities for caption customization is best 
    more » « less
  2. Caption text conveys salient auditory information to deaf or hard-of-hearing (DHH) viewers. However, the emotional information within the speech is not captured. We developed three emotive captioning schemas that map the output of audio-based emotion detection models to expressive caption text that can convey underlying emotions. The three schemas used typographic changes to the text, color changes, or both. Next, we designed a Unity framework to implement these schemas and used it to generate stimuli videos. In an experimental evaluation with 28 DHH viewers, we compared DHH viewers’ ability to understand emotions and their subjective judgments across the three captioning schemas. We found no significant difference in participants’ ability to understand the emotion based on the captions or their subjective preference ratings. Open-ended feedback revealed factors contributing to individual differences in preferences among the participants and challenges with automatically generated emotive captions that motivate future work. 
    more » « less
  3. Deaf and hard of hearing individuals regularly rely on captioning while watching live TV. Live TV captioning is evaluated by regulatory agencies using various caption evaluation metrics. However, caption evaluation metrics are often not informed by preferences of DHH users or how meaningful the captions are. There is a need to construct caption evaluation metrics that take the relative importance of words in transcript into account. We conducted correlation analysis between two types of word embeddings and human-annotated labelled word-importance scores in existing corpus. We found that normalized contextualized word embeddings generated using BERT correlated better with manually annotated importance scores than word2vec-based word embeddings. We make available a pairing of word embeddings and their human-annotated importance scores. We also provide proof-of-concept utility by training word importance models, achieving an F1-score of 0.57 in the 6-class word importance classification task. 
    more » « less
  4. Evaluating the quality of accessible image captions with human raters is difficult, as it may be difficult for a visually impaired user to know how comprehensive a caption is, whereas a sighted assistant may not know what information a user will need from a caption. To explore how image captioners and caption consumers assess caption content, we conducted a series of collaborative captioning sessions in which six pairs, consisting of a blind person and their sighted partner, worked together to discuss, create, and evaluate image captions. By making captioning a collaborative task, we were able to observe captioning strategies, to elicit questions and answers about image captions, and to explore blind users’ caption preferences. Our findings provide insight about the process of creating good captions and serve as a case study for cross-ability collaboration between blind and sighted people. 
    more » « less
  5. Recent research has investigated automatic methods for identifying how important each word in a text is for the overall message, in the context of people who are Deaf and Hard of Hearing (DHH) viewing video with captions. We examine whether DHH users report benefits from visual highlighting of important words in video captions. In formative interview and prototype studies, users indicated a preference for underlining of 5%-15% of words in a caption text to indicate that they are important, and they expressed an interest for such text markup in the context of educational lecture videos. In a subsequent user study, 30 DHH participants viewed lecture videos in two forms: with and without such visual markup. Users indicated that the videos with captions containing highlighted words were easier to read and follow, with lower perceived task-load ratings, compared to the videos without highlighting. This study motivates future research on caption highlighting in online educational videos, and it provides a foundation for how to evaluate the efficacy of such systems with users. 
    more » « less