skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: UTexas Aptamer Database: the collection and long-term preservation of aptamer sequence information
Abstract

A growing interest in aptamer research, as evidenced by the increase in aptamer publications over the years, has led to calls for a go-to site for aptamer information. A comprehensive, publicly available aptamer dataset, which may be a repository for aptamer data, standardize aptamer reporting, and generate opportunities to expand current research in the field, could meet such a demand. There have been several attempts to create aptamer databases; however, most have been abandoned or removed entirely from public view. Inspired by previous efforts, we have published the UTexas Aptamer Database, https://sites.utexas.edu/aptamerdatabase, which includes a publicly available aptamer dataset and a searchable database containing a subset of all aptamer data collected to date (1990–2022). The dataset contains aptamer sequences, binding and selection information. The information is regularly reviewed internally to ensure accuracy and consistency across all entries. To support the continued curation and review of aptamer sequence information, we have implemented sustaining mechanisms, including researcher training protocols, an aptamer submission form, data stored separately from the database platform, and a growing team of researchers committed to updating the database. Currently, the UTexas Aptamer Database is the largest in terms of the number of aptamer sequences with 1,443 internally reviewed aptamer records.

 
more » « less
PAR ID:
10471912
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
52
Issue:
D1
ISSN:
0305-1048
Format(s):
Medium: X Size: p. D351-D359
Size(s):
p. D351-D359
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cadmium (Cd) is one of the most toxic heavy metals. Exposure to Cd can impair the functions of the kidney, respiratory system, reproductive system and skeletal system. Cd2+-binding aptamers have been extensively utilized in the development of Cd2+-detecting devices; however, the underlying mechanisms remain elusive. This study reports four Cd2+-bound DNA aptamer structures, representing the only Cd2+-specific aptamer structures available to date. In all the structures, the Cd2+-binding loop (CBL-loop) adopts a compact, double-twisted conformation and the Cd2+ ion is mainly coordinated with the G9, C12 and G16 nucleotides. Moreover, T11 and A15 within the CBL-loop form one regular Watson–Crick pair and stabilize the conformation of G9. The conformation of G16 is stabilized by the G8–C18 pair of the stem. By folding and/or stabilizing the CBL-loop, the other four nucleotides of the CBL-loop also play important roles in Cd2+ binding. Similarly to the native sequence, crystal structures, circular dichroism spectrum and isothermal titration calorimetry analysis confirm that several variants of the aptamer can recognize Cd2+. This study not only reveals the underlying basis for the binding of Cd2+ ions with the aptamer, but also extends the sequence for the construction of novel metal–DNA complex.

     
    more » « less
  2. Abstract

    The ability to monitor types, concentrations, and activities of different biomolecules is essential to obtain information about the molecular processes within cells. Successful monitoring requires a sensitive and selective tool that can respond to these molecular changes. Molecular aptamer beacon (MAB) is a molecular imaging and detection tool that enables visualization of small or large molecules by combining the selectivity and sensitivity of molecular beacon and aptamer technologies. MAB design leverages structure switching and specific recognition to yield an optical on/off switch in the presence of the target. Various donor–quencher pairs such as fluorescent dyes, quantum dots, carbon‐based materials, and metallic nanoparticles have been employed in the design of MABs. In this work, the diverse biomedical applications of MAB technology are focused on. Different conjugation strategies for the energy donor–acceptor pairs are addressed, and the overall sensitivities of each detection system are discussed. The future potential of this technology in the fields of biomedical research and diagnostics is also highlighted.

     
    more » « less
  3. Multiplex assays often rely on expensive sensors incorporating covalently linked fluorescent dyes. Herein, we developed a self-assembling aptamer-based multiplex assay. This multiplex approach utilizes a previously established split aptamer sensor in conjugation with a novel split aptamer sensor based upon a malachite green DNA aptamer. This system was capable of simultaneous fluorescent detection of two SARS COVID-19-related sequences in one sample with individual sensors that possesses a limit of detection (LOD) in the low nM range. Optimization of the Split Malachite Green (SMG) sensor yielded a minimized aptamer construct, Mini-MG, capable of inducing fluorescence of malachite green in both a DNA hairpin and sensor format. 
    more » « less
  4. Antibodies are important biomolecules that are often designed to recognize target antigens. However, they are expensive to produce and their relatively large size prevents their transport across lipid membranes. An alternative to antibodies is aptamers, short ([Formula: see text] bp) oligonucleotides (and amino acid sequences) with specific secondary and tertiary structures that govern their affinity to specific target molecules. Aptamers are typically generated via solid phase oligonucleotide synthesis before selection and amplification through Systematic Evolution of Ligands by EXponential enrichment (SELEX), a process based on competitive binding that enriches the population of certain strands while removing unwanted sequences, yielding aptamers with high specificity and affinity to a target molecule. Mathematical analyses of SELEX have been formulated in the mass action limit, which assumes large system sizes and/or high aptamer and target molecule concentrations. In this paper, we develop a fully discrete stochastic model of SELEX. While converging to a mass-action model in the large system-size limit, our stochastic model allows us to study statistical quantities when the system size is small, such as the probability of losing the best-binding aptamer during each round of selection. Specifically, we find that optimal SELEX protocols in the stochastic model differ from those predicted by a deterministic model.

     
    more » « less
  5. Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising for biosensing applications because target-induced conformational change can be directly linked to a functional output. However, traditional evolution methods do not select for the significant conformational change needed to create structure-switching biosensors. Modified selection methods have been described to select for structure-switching architectures, but these remain limited by the need for immobilization. Herein we describe the first homogenous, structure-switching aptamer selection that directly reports on biosensor capacity for the target. We exploit the activity of restriction enzymes to isolate aptamer candidates that undergo target-induced displacement of a short complementary strand. As an initial demonstration of the utility of this approach, we performed selection against kanamycin A. Four enriched candidate sequences were successfully characterized as structure-switching biosensors for detection of kanamycin A. Optimization of biosensor conditions afforded facile detection of kanamycin A (90 μM to 10 mM) with high selectivity over three other aminoglycosides. This research demonstrates a general method to directly select for structure-switching biosensors and can be applied to a broad range of small-molecule targets. 
    more » « less