skip to main content


This content will become publicly available on October 7, 2024

Title: Host–pathogen interactions under pressure: A review and meta‐analysis of stress‐mediated effects on disease dynamics
Abstract

Human activities have increased the intensity and frequency of natural stressors and created novel stressors, altering host–pathogen interactions and changing the risk of emerging infectious diseases. Despite the ubiquity of such anthropogenic impacts, predicting the directionality of outcomes has proven challenging. Here, we conduct a review and meta‐analysis to determine the primary mechanisms through which stressors affect host–pathogen interactions and to evaluate the impacts stress has on host fitness (survival and fecundity) and pathogen infectivity (prevalence and intensity). We assessed 891 effect sizes from 71 host species (representing seven taxonomic groups) and 78 parasite taxa from 98 studies. We found that infected and uninfected hosts had similar sensitivity to stressors and that responses varied according to stressor type. Specifically, limited resources compromised host fecundity and decreased pathogen intensity, while abiotic environmental stressors (e.g., temperature and salinity) decreased host survivorship and increased pathogen intensity, and pollution increased mortality but decreased pathogen prevalence. We then used our meta‐analysis results to develop susceptible–infected theoretical models to illustrate scenarios where infection rates are expected to increase or decrease in response to resource limitations or environmental stress gradients. Our results carry implications for conservation and disease emergence and reveal areas for future work.

 
more » « less
NSF-PAR ID:
10471915
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
26
Issue:
11
ISSN:
1461-023X
Format(s):
Medium: X Size: p. 2003-2020
Size(s):
["p. 2003-2020"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Environmental stressors can be key drivers of phenotypes, including reproductive strategies and morphological traits. The response to stress may be altered by the presence of microbial associates. For example, in aphids, facultative (secondary) bacterial symbionts can provide protection against natural enemies and stress induced by elevated temperatures. Furthermore, aphids exhibit phenotypic plasticity, producing winged (rather than wingless) progeny that may be better able to escape danger, and the combination of these factors improves the response to stress. How symbionts and phenotypic plasticity, both of which shape aphids’ stress response, influence one another, and together influence host fitness, remains unclear.

    In this study, we investigate how environmental stressors drive shifts in fecundity and winged/wingless offspring production, and how secondary symbionts influence the process. We induced production of winged offspring through distinct environmental stressors, including exposure to aphid alarm pheromone and crowding, and, in one experiment, we assessed whether the aphid response is influenced by host plant.

    In the winged morph, energy needed for wing maintenance may lead to trade‐offs with other traits, such as reproduction or symbiont maintenance. Potential trade‐offs between symbiont maintenance and fitness have been proposed but have not been tested. Thus, beyond studying the production of offspring of alternative morphs, we also explore the influence of symbionts across wing/wingless polyphenism as well as symbiont interaction with cross‐generational impacts of environmental stress on reproductive output.

    All environmental stressors resulted in increased production of winged offspring and shifts in fecundity rates. Additionally, in some cases, aphid host‐by‐symbiont interactions influenced fecundity. Stress on first‐generation aphids had cross‐generational impacts on second‐generation adults, and the impact on fecundity was further influenced by the presence of secondary symbionts and presence/absence of wings.

    Our study suggests a complex interaction between beneficial symbionts and environmental stressors. Winged aphids have the advantage of being able to migrate out of danger with more ease, but energy needed for wing production and maintenance may come with reproductive costs for their mothers and for themselves, where in certain cases, these costs are altered by secondary symbionts.

     
    more » « less
  2. Abstract

    The likelihood an individual becomes infected depends on the community in which it is embedded. For environmentally transmitted parasites, host community composition can alter host density, the density of parasites that hosts encounter in the environment, and the dose to which hosts are subsequently exposed. While some multi‐host theory incorporates some of these factors (e.g., competition among hosts), it does not currently consider the nonlinear relationships between parasite exposure dose and per‐propagule infectivity (dose–infectivity relationships), between exposure dose and infected host mortality (dose–mortality relationships), and between exposure dose and parasite propagule excretion (dose–excretion relationships). This makes it difficult to predict the impact of host species on one another’s likelihood of infection. To understand the implications of these nonlinear dose relationships for multi‐host communities, we first performed a meta‐analysis on published dose–infectivity experiments to quantify the proportion of accelerating, linear, or decelerating dose–infectivity relationships; we found that most experiments demonstrated decelerating dose–infectivity relationships. We then explored how dose–infectivity, dose–mortality, and dose–excretion relationships might alter the impact of heterospecific host density on infectious propagule density, infection prevalence, and density of a focal host using two‐host, one‐parasite models. We found that dose relationships either decreased the magnitude of the impact of heterospecific host density on propagule density and infection prevalence via negative feedback loops (decelerating dose–infectivity relationships, positive dose–mortality relationships, and negative dose–excretion relationships), or increased the magnitude of the impact of heterospecific host density on infection prevalence via positive feedback loops (accelerating dose–infectivity relationships and positive dose–excretion relationships). Further, positive dose–mortality relationships resulted in hosts that traditionally decrease disease (e.g., low competence, strong competitors) increasing infection prevalence, and vice versa. Finally, we found that dose relationships can create positive feedback loops that facilitate friendly competition (i.e., increased heterospecific density has a positive effect on focal host density because the reduction in disease outweighs the negative effects of interspecific competition). This suggests that without taking dose relationships into account, we may incorrectly predict the effect of heterospecific host interactions, and thus host community composition, on environmentally transmitted parasites.

     
    more » « less
  3. Summary

    High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature‐driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasiteCrithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growthin vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non‐linear, and taxon‐specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen‐containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature‐dependent activity of gut bacteria. The thermal ecology of gut parasite‐symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever‐based immunity.

     
    more » « less
  4. Abstract

    Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.

    Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.

    Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.

    Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.

    Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.

     
    more » « less
  5. The global movement of pathogens is altering populations and communities through a variety of direct and indirect ecological pathways. The direct effect of a pathogen on a host is reduced survival, which can lead to decreased population densities. However, theory also suggests that increased mortality can lead to no change or even increases in the density of the host. This paradoxical result can occur in a regulated population when the pathogen’s negative effect on survival is countered by increased reproduction at the lower density. Here, we analyze data from a long-term capture–mark–recapture experiment of Trinidadian guppies (Poecilia reticulata) that were recently infected with a nematode parasite (Camallanus cotti). By comparing the newly infected population with a control population that was not infected, we show that decreases in the density of the infected guppy population were transient. The guppy population compensated for the decreased survival by a density-dependent increase in recruitment of new individuals into the population, without any change in the underlying recruitment function. Increased recruitment was related to an increase in the somatic growth of uninfected fish. Twenty months into the new invasion, the population had fully recovered to preinvasion densities even though the prevalence of infection of fish in the population remained high (72%). These results show that density-mediated indirect effects of novel parasites can be positive, not negative, which makes it difficult to extrapolate to how pathogens will affect species interactions in communities. We discuss possible hypotheses for the rapid recovery.

     
    more » « less