skip to main content

Title: A Unified Theory of Jetted Tidal Disruption Events: From Promptly Escaping Relativistic to Delayed Transrelativistic Jets

Only a tiny fraction ∼1% of stellar tidal disruption events (TDEs) generate powerful relativistic jets evidenced by luminous hard X-ray and radio emissions. We propose that a key property responsible for both this surprisingly low rate and a variety of other observations is the typically large misalignmentψbetween the orbital plane of the star and the spin axis of the supermassive black hole (SMBH). Such misaligned disk/jet systems undergo Lense–Thirring precession together about the SMBH spin axis. We find that TDE disks precess sufficiently rapidly that winds from the accretion disk will encase the system on large scales in a quasi-spherical outflow. We derive the critical jet efficiencyη>ηcritfor both aligned and misaligned precessing jets to successfully escape from the disk wind ejecta. Asηcritis higher for precessing jets, less powerful jets only escape after alignment with the SMBH spin. Alignment can occur through magneto-spin or hydrodynamic mechanisms, which we estimate occur on typical timescales of weeks and years, respectively. The dominant mechanism depends onηand the orbital penetration factorβ. Hence, depending only on the intrinsic parameters of the event {ψ,η,β}, we propose that each TDE jet can either escape prior to alignment, thus exhibiting an erratic X-ray light curve and two-component radio afterglow (e.g., Swift J1644+57), or escape after alignment. Relatively rapid magneto-spin alignments produce relativistic jets exhibiting X-ray power-law decay and bright afterglows (e.g., AT2022cmc), while long hydrodynamic alignments give rise to late jet escape and delayed radio flares (e.g., AT2018hyz).

more » « less
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Medium: X Size: Article No. L9
["Article No. L9"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract X-shaped radio galaxies (XRGs) produce misaligned X-shaped jet pairs and make up ≲10% of radio galaxies. XRGs are thought to emerge in galaxies featuring a binary supermassive black hole (SMBH), SMBH merger, or large-scale ambient medium asymmetry. We demonstrate that XRG morphology can naturally form without such special, preexisting conditions. Our 3D general-relativistic magnetohydrodynamic (GRMHD) simulation for the first time follows magnetized rotating gas from outside the SMBH sphere of influence of radius R B to the SMBH of gravitational radius R g at the largest scale separation, R B / R g = 10 3 , to date. Initially, our axisymmetric system of constant-density hot gas contains a weak vertical magnetic field and rotates in the equatorial plane of a rapidly spinning SMBH. We seed the gas with small-scale 2% level pressure perturbations. Infalling gas forms an accretion disk, and the SMBH launches relativistically magnetized collimated jets reaching well outside R B . Under the pressure of the infalling gas, the jets intermittently turn on and off, erratically wobble, and inflate pairs of cavities in different directions, resembling an X-shaped jet morphology. Synthetic X-ray images reveal multiple pairs of jet-powered shocks and cavities. Large-scale magnetic flux accumulates on the SMBH, becomes dynamically important, and leads to a magnetically arrested disk state. The SMBH accretes at 2% of the Bondi rate ( M ̇ ≃ 2.4 × 10 − 3 M ⊙ yr − 1 for M87*) and launches twin jets at η = 150% efficiency. These jets are powerful enough ( P jets ≃ 2 × 10 44 erg s −1 ) to escape along the SMBH spin axis and end the short-lived intermittent jet state, whose transient nature can account for the rarity of XRGs. 
    more » « less
  2. Tidal disruption events (TDEs) around supermassive black holes (SMBHs) are a potential laboratory to study super-Eddington accretion disks and sometimes result in powerful jets or outflows which may shine in the radio and sub-millimeter bands. In this work, we modeled the thermal synchrotron emission of jets by general relativistic radiation magneto-hydrodynamics (GRRMHD) simulations of a BH accretion disk/jet system which assumed the TDE resulted in a magnetized accretion disk around a BH accreting at ∼12–25 times the Eddington accretion rate. Through synthetic observations with the Next Generation Event Horizon Telescope (ngEHT) and an image reconstruction analysis, we demonstrate that TDE jets may provide compelling targets within the context of the models explored in this work. In particular, we found that jets launched by a SANE super-Eddington disk around a spin a*=0.9 reach the ngEHT detection threshold at large distances (up to 100 Mpc in this work). A two-temperature plasma in the jet or weaker jets, such as a spin a*=0 model, requires a much closer distance, as we demonstrate detection at 10 Mpc for limiting cases of a*=0,R=1 or a*=0.9,R=20. We also demonstrate that TDE jets may appear as superluminal sources if the BH is rapidly rotating and the jet is viewed nearly face on. 
    more » « less
  3. Abstract

    Accreting supermassive black holes (SMBHs) produce highly magnetized relativistic jets that tend to collimate gradually as they propagate outward. However, recent radio interferometric observations of the 3C 84 galaxy reveal a stunning, cylindrical jet already at several hundred SMBH gravitational radii,r≳ 350rg. We explore how such extreme collimation emerges via a suite of 3D general relativistic magnetohydrodynamic simulations. We consider an SMBH surrounded by a magnetized torus immersed in a constant-density ambient medium that starts at the edge of the SMBH sphere of influence, chosen to be much larger than the SMBH gravitational radius,rB= 103rg. We find that radiatively inefficient accretion flows (e.g., M87) produce winds that collimate the jets into parabolas near the black hole. After the disk winds stop collimating the jets atrrB, they turn conical. Once outsiderB, the jets run into the ambient medium and form backflows that collimate the jets into cylinders some distance beyondrB. Interestingly, for radiatively efficient accretion, as in 3C 84, the radiative cooling saps the energy out of the disk winds; at early times, they cannot efficiently collimate the jets, which skip the initial parabolic collimation stage, start out conical near the SMBH, and turn into cylinders already atr≃ 300rg, as observed in 3C 84. Over time, the jet power remains approximately constant, whereas the mass accretion rate increases; the winds grow in strength and start to collimate the jets, which become quasi-parabolic near the base, and the transition point to a nearly cylindrical jet profile moves outward while remaining insiderB.

    more » « less
  4. null (Ed.)
    ABSTRACT Luminous active galactic nuclei and X-ray binaries often contain geometrically thin, radiatively cooled accretion discs. According to theory, these are – in many cases – initially highly misaligned with the black hole equator. In this work, we present the first general relativistic magnetohydrodynamic simulations of very thin (h/r ∼ 0.015–0.05) accretion discs around rapidly spinning (a ∼ 0.9) black holes and tilted by 45°–65°. We show that the inner regions of the discs with h/r ≲ 0.03 align with the black hole equator, though out to smaller radii than predicted by analytic work. The inner aligned and outer misaligned disc regions are separated by a sharp break in tilt angle accompanied by a sharp drop in density. We find that frame dragging by the spinning black hole overpowers the disc viscosity, which is self-consistently produced by magnetized turbulence, tearing the disc apart and forming a rapidly precessing inner sub-disc surrounded by a slowly precessing outer sub-disc. We find that the system produces a pair of relativistic jets for all initial tilt values. At small distances, the black hole launched jets precess rapidly together with the inner sub-disc, whereas at large distances they partially align with the outer sub-disc and precess more slowly. If the tearing radius can be modeled accurately in future work, emission model independent measurements of black hole spin based on precession-driven quasi-periodic oscillations may become possible. 
    more » « less
  5. Abstract

    Black hole (BH) spin can play an important role in galaxy evolution by controlling the amount of energy and momentum ejected from near the BH into the surroundings. We focus on radiatively inefficient and geometrically thick magnetically arrested disks (MADs) that can launch strong BH-powered jets. With an appropriately chosen adiabatic index, these systems can describe either the low-luminosity or highly super-Eddington BH accretion regimes. Using a suite of 3D general relativistic magnetohydrodynamic simulations, we find that for any initial spin, an MAD rapidly spins down the BH to the equilibrium spin of 0 <aeq≲ 0.1, very low compared toaeq= 1 for the standard thin luminous (Novikov–Thorne) disks. This implies that rapidly accreting (super-Eddington) BHs fed by MADs tend to lose most of their rotational energy to magnetized relativistic outflows. In an MAD, a BH only needs to accrete 20% of its own mass to spin down froma= 1–0.2. We construct a semi-analytic model of BH spin evolution in MADs by taking into account the torques on the BH due to both the hydrodynamic disk and electromagnetic jet components, and find that the low value ofaeqis due to both the jets slowing down the BH rotation and the disk losing a large fraction of its angular momentum to outflows. Our results have crucial implications for how BH spins evolve in active galaxies and other systems such as collapsars, where the BH spin-down timescale can be short enough to significantly affect the evolution of gamma-ray emitting BH-powered jets.

    more » « less